COSPAS-SARSAT
INTERNATIONAL 406 MHZ
BEACON REGISTRATION DATABASE
(IBRD)

SOFTWARE MAINTENANCE MANUAL

C/S D.002
Issue 1
November 2005

(=.SARSAT
COSPASY~Y)

D2NOV05 i C/S D.002 — Issue 1
November 2005

INTERNATIONAL 406 MHz BEACON REGISTRATION DATABASE (IBRD)
SOFTWARE MAINTENANCE MANUAL

History

Issue Revision Date Revised Pages Comments

1 November 2005 All new Approved CSC-35

D2NOV05 ii C/S D.002 — Issue 1
November 2005

LIST OF PAGES

Page # Date of Page # Date of Page # Date of
latest latest latest
revision revision revision

cover Nov 05 5-1 Nov 05 8-20 Nov 05

i Nov 05 5-2 Nov 05 8-21 Nov 05

ii Nov 05 5-3 Nov 05 8-22 Nov 05

iii Nov 05 5-4 Nov 05 8-23 Nov 05

iv Nov 05 8-24 Nov 05

\% Nov 05 6-1 Nov 05 8-25 Nov 05

Vi Nov 05 6-2 Nov 05 8-26 Nov 05

6-3 Nov 05
1-1 Nov 05 6-4 Nov 05 9-1 Nov 05
1-2 Nov 05 6-5 Nov 05 9-2 Nov 05

6-6 Nov 05 9-3 Nov 05
2-1 Nov 05 9-4 Nov 05
2-2 Nov 05 7-1 Nov 05

7-2 Nov 05 10-1 Nov 05

3-1 Nov 05 7-3 Nov 05 10-2 Nov 05

3-2 Nov 05 7-4 Nov 05 10-3 Nov 05

3-3 Nov 05 10-4

3-4 Nov 05 8-1 Nov 05 10-5 Nov 05

8-2 Nov 05 10-6 Nov 05

4-1 Nov 05 8-3 Nov 05 10-7 Nov 05

4-2 Nov 05 8-4 Nov 05 10-8 Nov 05

4-3 Nov 05 8-5 Nov 05

4-4 Nov 05 8-6 Nov 05 A-1 Nov 05

4-5 Nov 05 8-7 Nov 05 A-2 Nov 05

4-6 Nov 05 8-8 Nov 05

4-7 Nov 05 8-9 Nov 05

4-8 Nov 05 8-10 Nov 05

4-9 Nov 05 8-11 Nov 05

4-10 Nov 05 8-12 Nov 05

4-11 Nov 05 8-13 Nov 05

4-12 Nov 05 8-14 Nov 05

4-13 Nov 05 8-15 Nov 05

4-14 Nov 05 8-16 Nov 05

4-15 Nov 05 8-17 Nov 05

4-16 Nov 05 8-18 Nov 05

8-19 Nov 05

D2NOV05 iii C/S D.002 — Issue 1

November 2005
TABLE OF CONTENTS
Page
REVISION HISLOMY .ottt et et e e b e e s s e e be e e b e e sbeeanbe e teeanne e e i
LIST OF PAGES. ...ttt bt bbbt e e bbbttt I
TaADIE OF CONLENTS ...ttt sbe b nre e ii
1. INTRODUGCTION. ..ottt sttt sbe st ans 1-1
11 PUIPOSE ..ttt et 1-1
1.2 BaCKGrOUNG ..o 1-1
1.3 Document OrganiZationc.ccocveiieiiieiie et see e re e ana e 1-2
2. OVERVIEW. ...ttt sttt st st nbenne s 2-1
3. SOFTWARE COMPONENTS ..ottt st nnea 3-1
3.1 Main IBRD APPHCALIONccoieiiiiiii it 3-1
3.2 Supporting IBRD COMPONENTSueeevieiiieeiieiiie e 3-1
3.3 COTS and Open Source COMPONENTS........ccvverueeiereeireeiesee e eeesree e eee e e 3-2
4. DATA STRUCTURES AND CONFIGURATION.......ccoitiiiiiieiniere e 4-1
4.1 RegiStrationDBA0B6...........cccveiuiiiiiieie et 4-1
4.2 BeaconActivationMethodCTg.........cccvoiiiiiiiieceeccc e 4-7
4.3 BeaconHOMINGDEVICECTYocviiieiicic e 4-7
4.4 BeaCONREGTYPECTY .uvivieiei et 4-8
4.5 BeaCONTYPECTY. ..eeiiiiece e 4-8
4.6 ConfirmationStatUSCTQ......ccveiieiicc s 4-9
4.7 o 40T Lo 1Y 0 1-T 4 o OSSR 4-10
4.8 RaAdIOCAlISIGNCTY ..o 4-10
4.9 RadiOEQUIPMENTICTY....eiiiieece e 4-11
410 ReCOrdStatUSCTQ...cuiiieiiieiecie st 4-11
R = (0] =1~ 4 {0 SO SUPR 4-12
412 SPECIAlSTAtUSCI ..ouvecviecieee e s 4-13
413 ELTVENICIETYPECTY ..ottt 4-13
414 EPIRBVENICIETYPECTY .ccouiiiiiiei ettt 4-14
415 PLBVENICIETYPECTY ...oiiiiiiiieceee ettt 4-14
416 UsageMOorelnNfOCTQ......coi i 4-15
4.17 PasswordChallengeCtgccveiieiiiiccece e 4-15

S T Y/ - 1 (@0 TU 104 { o [OOSR 4-16

D2NOV05 iv C/S D.002 — Issue 1

November 2005

5. J2EE BACKGROUNDccoioiiiiiiiiie ettt 5-1
5.1 EAR SETUCLUIE ...ttt 5-1

5.2 WAR STTUCTUIE ..ottt 5-1

6. MAIN APPLICATION STRUCTURE.........cccoiiiiiieenese e 6-1
6.1 IBRD Deployment STrUCTUIE.........ccueeieieeie e 6-1

6.2 Software Development/Deployment Folder Structure...........ccoccevvevvevieinenne. 6-3

7. MAIN APPLICATION MODULE MAPPINGS.ccooiiiiiiiiinieeee e 7-1
8. INTERNAL STRUCTURES AND SUPPORTING ELEMENTSc.ccoocvivnienn. 8-1
8.1 Application Deployment XML DeSCIIPLOrccccoviieeieerieiieseerie e seesieaneens 8-1

8.2 JRUN Resource XML DeSCHIPLOrccviiieieciesie et 8-2

8.3 Web Application Deployment XML DeSCriptor.........ccevvivviivereciesiesieanens 8-2

8.4 EJB-JAR XML DESCIIPLONc.viiiieivieie ettt 8-4

8.5 Access Control List XML DeSCHPLOLccvviieiveieies it 8-5

8.6 Database XML DESCIIPLONcviieeieiiiiiieie e csie e sre e 8-7

8.7 Logging XML DeSCIIPLON.eieeiveeiieeeesieesieeiesee e eee e se e sre e e sreenee s 8-8

8.8 Custom Tag Library DeSCrPOrS.......c.coveiieiiieiieie et 8-10

8.9 Multi-Lingual Functionalityccccceiiiiieii i 8-12

8.10 Document Manager Properties File..........ccooviiiiiiiiiiiice 8-20

8.11 Letters and TEMPIALESooiiieriiriiiieieeee e 8-22

8.12 Request for Confirmation PrOCESS.........cccoiiriiiirininieiieieeee e 8-22

8.13 FileArCPUIGE PrOCESSoiuiitiitiiiiiiesiieiiee ettt 8-23

8.14 ArCPUIgeTabIES PrOCESS.ciiiuiiiiiiieiieieiee et 8-24

8.15 Beacon DECOUE PrOCESScccccvueieerireieiiesiieiesieesieeieseesteesessseesseessesneesseeses 8-25

9. SOFTWARE MODIFICATIONSooiiiit ettt 9-1
9.1 IDE INSTAlAtioNoeeieeeeceece e 9-1

9.2 USING NEEDEANS ..ot 9-1

10. IBRD SYSTEM INSTALLATIONcioiiiiiiceecee et 10-1
10.1 Installing the DAtabasecccoveieiirieninieieeie e 10-1

10.2 Installing the Application and Related COTS.........ccooviiiiiiiincece 10-2

LIST OF ANNEXES

ANNEX A: LIST OF ABBREVIATIONS AND ACRONYMSccccooiiiniiiiiiniee, A-1

D2NOV05 % C/S D.002 — Issue 1
November 2005
LIST OF FIGURES
Figure 2.1: General Hardware StrUCLUIEc.ccveiveieieese s sie et 2-1
Figure 5.1: Web Application Folder STtrUCtUrecooviiiiiiiieeeee e 5-3
Figure 6.1: Software FOIAer StrUCTUIEcceiiiiiece e 6-4
LIST OF TABLES
Table 7.1: MOAUIE IMAPPINGS ...veveeie et e st raenne e 7-2

D2NOV05 Vi C/S D.002 — Issue 1
November 2005

page left blank

D2NOVO05 1-1 C/S D.002 — Issue 1
November 2005

1. INTRODUCTION

1.1 Purpose

This document provides information to support software maintenance efforts for an
International 406 MHz Beacon Registration Database (IBRD). Topics covered include the
overall system structure, specific software components, the underlying data structures,
detailed module mappings and information on performing software modifications.

1.2 Background

Cospas-Sarsat Participants operate a satellite system capable of detecting and locating
distress alert transmissions from radio beacons operating at 121.5, 243 and 406 MHz. The
beacon signals transmitted over 121.5 MHz and 243 MHz do not include any identification
that can be processed by the receiving stations of the Cospas-Sarsat system. Therefore, there
is no operational advantage to registering these types of beacons.

The Cospas-Sarsat 406 MHz system provides search and rescue (SAR) services with distress
alerts that include the unique 15-character hexadecimal identification of the transmitting
beacon. This beacon identification can be decoded to obtain information including:

a) the type of beacon, i.e. aircraft Emergency Locator Transmitter (ELT), vessel
Emergency Position Indicating Radio Beacon (EPIRB) or Personal Locator
Beacon (PLB),

b) the country code and identification data which form the unique beacon
identification, and

C) the type of auxiliary radio locating (homing) device.

If a beacon is properly registered, the 15-character hexadecimal identification of the beacon
can be used to access additional information. Beacon registration databases can provide
information of great use to SAR services, including:

a) specific aircraft or vessel identification information,
b) the make/model of aircraft or vessel in distress,

€c) communications equipment available, and

d) the number of persons onboard.

Such information can be made available to SAR services only if the required information is
provided to the registration authority by the beacon owner/operator.

Registration of 406 MHz beacons is required in accordance with international regulations on
SAR established by the International Civil Aviation Organization (ICAO) and the
International Maritime Organization (IMO), and registration information must be made
available to SAR services on a 24-hour basis. A number of countries have made 406 MHz
beacon registration mandatory and maintain national 406 MHz beacon registration databases.

However, despite the clear advantages of registration, a large number of 406 MHz beacons
are not properly registered due to a lack of registration facilities in a number of countries.
Furthermore, a number of beacon registries do not have 24-hour points-of-contact easily

D2NOVO05 1-2 C/S D.002 — Issue 1
November 2005

accessible by SAR services. The IBRD is freely available to users with no access to national
registration facilities and to Administrations who wish to avail themselves of the facility to
make their national beacon registration data more available to SAR services.
The IBRD provides various levels of access to:
a) beacon owners who wish to register their beacons,
b) Administrations who wish to make registration data available to international
SAR services, and
C) SAR services that need to access beacon registration data to efficiently process
distress alerts.
Cospas-Sarsat provides the IBRD solely for the purpose of assisting SAR Services in SAR
operations and is not intended to fulfil the obligation of National Administrations, as required
by IMO and ICAOQ, to provide a National beacon registration facility.
1.3 Document Organization
Section 2 provides an Overview of the IBRD System.
Section 3 outlines the Software Components that comprise the IBRD System.
Section 4 details Data Structures and other Configuration elements.

Section 5 provides background information on the Java 2 Enterprise Edition (J2EE)
paradigm.

Section 6 outlines the deployment and software structure of the Main IBRD Application.

Section 7 details the Mappings between functions and the underlying software modules for
the Main IBRD Application.

Section 8 describes various Internal Structures and Supporting Elements used by the various
IBRD software components.

Section 9 provides information for performing Software Modifications.

Section 10 details the process of IBRD System Installation.

- END OF SECTION 1 -

D2NOV05 2-1 C/S D.002 — Issue 1
November 2005

2. OVERVIEW

The IBRD System provides a full featured web based capability for storing and querying data
pertaining to the registration of 406 MHz distress beacons. This system involves one core
application with a number supporting elements and packages. The various software
components are discussed at a general level in the next section, and in further detail as
appropriate in the sections that follow. The central structural element of the IBRD System is
the database, which houses the main registration records table as well as a variety of other
tables used for supporting operations such as configuration, logging and the generation of

App Server

reports.

==

Web Server Domain Contoller
: 5]
£ = 0
= [= o

Internet - 29 I Switch || e—
F-3 et P —————
z EE
(&)

Figure 2.1 General Hardware Structure

In order to provide an appropriate minimum level of security, the hardware that supports the
IBRD has the general structure depicted in Figure 1. In fact the actual hardware
configuration will likely differ somewhat (e.g., another firewall between the Internet and the
Web Server) but the essential elements pertinent to this discussion, the Web Server and App
Server computers, are shown.

This layout separates and protects the main components of the IBRD System from the
Internet with at least the one Firewall as shown. All critical system functions reside on the
Application Server, behind this firewall, while the basic task of handling and fulfilling
Internet requests and responses is performed by the Web Server. The only software
component residing on the Web Server is the third party package that performs this task, the
Apache HTTP Server. Beyond the installation process (discussed in Section 9), very little is
said in this document about the Web Server and/or the associated Apache package. The
focus for this manual is on all the software elements that reside on Application Server.

In relation to a general overview of the IBRD System, it is perhaps useful to at least briefly
discuss the origins of the application software. This software is an adaptation of an existing
application, the USA 406 MHz Emergency Beacon Registration Database (RGDB). As such,
a significant portion of the underlying structures as well as various naming conventions are
inherited from the original USA application software. A useful aside for the sake of
explanation is the occasional use of the text “noaa” in internal structures and/or file and
module naming conventions. NOAA is the acronym for the “National Oceanographic and
Atmospheric Administration”, the division of the USA government where the RGDB is
housed.
- END OF SECTION 2 -

D2NOV05 2-2 C/S D.002 — Issue 1
November 2005

page left blank

D2NOV05 3-1 C/S D.002 — Issue 1
November 2005

3. SOFTWARE COMPONENTS

This section introduces the various software components that make up the IBRD System. In
general, further details and underlying elements are detailed in the following sections.

3.1 Main IBRD Application

The central component of the IBRD System is a web application that employs Java 2
Enterprise Edition (J2EE) technology and an SQL database to provide a reliable and full
featured system for storing and querying data pertaining to the registration of 406 MHz
distress beacons.

The Main IBRD Application software involves a fairly complex set of source code that uses
most of the tools available in the J2EE paradigm. Classic J2EE features include: native Java
code, Enterprise Java Beans (EJB), Standard Java Beans, Java Scripts, Custom Tag Libraries,
Java Servlets and Java Server Pages (JSP). The software also uses various other web
programming tools including: Hyper Text Markup Language (HTML), eXtensible Markup
Language (XML), Cascading Style Sheets (CSS), Properties files and various image files.
Although the following sections attempt to describe many of these elements and their usage
to some degree, it is assumed that users of this manual either have some background in these
areas or will accordingly consult other resources for further information. Sections 5, 6, and 7
focus on the details of these various software elements that make up the Main IBRD
Application.

3.2 Supporting IBRD Components

3.21 Beacon Decode

The “Beacon Decode” software component provides the specialized function of
decoding the Beacon Identification Code used for 406 MHz emergency distress
beacons. These beacons employ a 60 bit digital code (translates to 15 hexadecimal
characters) which embeds a variety of useful information as briefly discussed in section
1.2 above. For a full explanation of the various encoding protocols and data that may
be encoded, the document “<406MHz TECHNICAL BEACON SPECIFICATION...>”
(C/S T.001) should be consulted.

For the purposes here, it suffices to understand that this software component takes the
15 character hexadecimal representation of the applicable 60 bits as input, and returns
the decoded fields needed by the IBRD application. The software is coded in C++, and
is accessed via a dynamic link library (DLL) using the Java Native Interface (JNI). The
C++ code itself is actually linked in as a static library in the DLL which is called
IBRD_BeaconDecode.dll. More details are provided Section 8.15 below as well in
Section 9 with regard to building new software releases.

D2NOV05 3-2 C/S D.002 — Issue 1

November 2005

3.2.2 Purging of Temporary Files

The file archive and purge application (IBRDFileArcPurge.exe) is a simple program
that identifies various temporary IBRD system files (e.g. text based log files) and
removes old (or aged-out) files based on the date. (Although the ability to archive files
is available the configuration for the IBRD generally simply purges files). The folders
(or file paths) and the number of days to retain a given type of file is configured using
the table named “DbmnFileArcPurgeCfg” which resides in the IBRD database. This
application is coded in Microsoft Visual Basic (Version 6.0) and is set up to run as a
Windows Scheduled Task. See Section 8.13 for more details.

3.2.3 Database Archival

The table archive and purge application (IBRDArcPurgeTables.exe) takes care of
archiving data from various tables in the IBRD database. This program moves “aged
out” records to similar tables found in a second database, the IBRDArchive database.
The number of days that records are kept in each table in the main IBRD database is
configured by setting appropriate values in the SystemCfg table. This application itself
is coded in Microsoft Visual Basic (Version 6.0) and is set up to run as a Windows
Scheduled Task. The underlying work is performed by a set of SQL Stored Procedures
which are called accordingly by the Visual Basic code. See Section 8.14 for more
details.

3.24 Request for Confirmation Process

The Request for Confirmation Process runs in the background in the form of an
operating system batch program named “ProcessTwoYearRequest.bat”. The purpose of
this process is to generate emails to beacon owners whose records have not been
updated in about two or more years. The email message specifically requests these
beacon owners to access the IBRD System and confirm or accordingly update the
information in the database. The batch file actually runs a Java application using JRun4
tools. The underlying code shares many modules with the Main IBRD Application and
resides along with the Main Application code in a web archive file. See Section 8.12
for more details.

3.3 COTS and Open Source Components

The following table is a list of commercial off the shelf (COTS) and open source components
used by the IBRD System. Version numbers are those applicable at the time of Acceptance
Testing and indicate the minimum recommended for reliable operations.

Name Version | Type | Description

Microsoft Windows 2000 COTS | Supplies the computer operating system.
Operating System

Microsoft SQL Server | 2000 COTS | Provides the platform for the IBRD database.
Standard Edition (SP3)

Macromedia JRun 4 COTS | Provides the Java Virtual Machine environment

D2NOV05 3-3 C/S D.002 — Issue 1
November 2005
Name Version | Type | Description
that supports the main IBRD application.
(includes Macromedia Type 1V JDBC Driver for
Microsoft SQL Server)
Java SDK 14.2 open Provides the underlying Java Runtime
source | Environment (JRE) used by JRun4.
Apache HTTP Server | 2.0.48+ | open Provides the HTTP Server — version with SSL
source | support (mod ssl) is required.
Jacob.jar 1.7 open This Java Archive (JAR) package provides a
source | JAva-COm-Bridge (Jacob) which allows calls to
COM Automation components from within Java
code. It uses the Java Native Interface (JNI) to
make calls into the COM and Win32 libraries
(used for calling Beacon Decode DLL).
Jacob.dll 1.7 open Dynamic Link Library (DLL) associated and used
source | with Jacob.jar to support Win32 library.
Xerces.jar N/A open This is an Parser which reads in eXtensible
source | Markup Language (XML) and extracts tags and
elements accordingly
Log4J-1.2.4.jar 1.24 open Logging package containing an API that provides
source | detailed context for application error or exception
logging.
mail.jar N/A open | JavaMail packages which provides facilities for
source | reading and sending email and supports multiple
protocols and service providers including SMTP,
IMAP and POP3
activation.jar N/A open Used in association with the above JavaMail API.
source | The activation.jar contains Java class files as part
of the JavaBeans Activation Framework (JAF)
J2EE jar N/A open | Core Library Package for J2EE applications.
source

- END OF SECTION 3 -

D2NOV05 3-4 C/S D.002 — Issue 1
November 2005

page left blank

C/S D.002 — Issue 1
November 2005

D2NOV05

4. DATA STRUCTURES AND CONFIGURATION

The IBRD application relies on an SQL database for of its central purpose which is the
storage of beacon registration records. In addition, database tables are used to facilitate
various functions such as system configuration and logging. The following sections provide
details pertaining to main beacon registration table and those supporting tables that
specifically configure the system at the application software level. The emphasis here is that
the contents and/or schema of these tables are most pertinent at the compilation and
underlying software development levels, and less so at the runtime level.

There are a number of other tables (data structures) that appear in the IBRD System
Maintenance Manual as they are used to either configure the system at the runtime level or
for runtime output such as logging. Several other tables in the database are simply discussed
as appropriate in one or both documents in association with specific features or components
of the IBRD System.

4.1 RegistrationDB406

4.1.1 Purpose

The RegistrationDB406 table is the main data table for the IBRD application. Its

purpose is to store all the beacon registration data. In effect, this table is the

beacon registration database, with all other tables providing supporting functions.

4.1.2 Table Layout

Field Name Type | Bytes Description Reg.! | Source?
Benld15 char 15 Bits 26-85 of 406 MHz beacon | Yes | Data
message. Expressed as exactly provider
15 hexadecimal characters (0-9,
A-F). Encoded position bits set
to default values.
CSTACNumber varchar 10 Cospas-Sarsat beacon type Data
nullable approval number provider /
beacon
decode
BeaconRegType tinyint 1 Type of beacon (See Beacon
BeaconRegTypeCfg) decode
BeaconType varchar 32 Protocol used for beacon coding Beacon
(See BeaconTypeCfg) decode
BeaconCountryCode smallint 2 Country Code from 406 Beacon Beacon
Id decode
BeaconActivationMethod char 4 Activation capability of beacon Data
nullable (See provider
BeaconActivationMethodCfg)

D2NOV05 4-2 C/S D.002 — Issue 1
November 2005
Field Name Type Bytes Description Req.! | Source?
BeaconManufacturer varchar 48 Name of manufacturer of Data
nullable beacon provider
BeaconModel varchar 32 Model name of beacon Data
nullable provider
SpecialStatus varchar 16 Indicates if the beacon is in-use, data
nullable lost, stolen, sold, adrift, etc. provider
(See SpecialStatusCfg)
SpecialStatusDate datetime 8 Associated Date/Time for Database
nullable change of beacon status
SpecialStatusinfo varchar 255 | Comments associated with data
nullable Change in Status provider
PreviousSpecial Status varchar 16 Store previous status of the Database
nullable beacon when a new status is
provided (see above)
BeaconHomingDevice varchar 10 Frequency or type of homing data
nullable device. (See provider /
BeaconHomingDeviceCfg) beacon
decode
AdditionalBeaconData varchar 64 | Any other information specific data
nullable to the beacon that may be useful provider
(e.g., manufacturers’ serial
number).
InitialDate datetime 8 Date of original registration Database
LastEditDate datetime 8 Date that a field was last Database
updated where the source was a
data provider
ConfirmPrintDate datetime 8 Date request for confirmation e- Database
nullable mail sent
ConfirmationCompletedDate datetime 8 Date request for confirmation Database
nullable acknowledged by owner
ConfirmationStatus char 4 Status of the “request for database /
nullable confirmation” process (See data
ConfirmationStatusCfg) provider
OwnerName varchar 48 Full personal name, company | Yes | data
name, or government agency provider
name
Password varchar 16 User password (Minimum of | Yes | data
eight characters) provider
Address varchar 48 Owner’s street or PO Box, data
nullable postal code provider
City varchar 32 Owner’s city data
nullable provider

D2NOV05 4-3 C/S D.002 — Issue 1
November 2005
Field Name Type Bytes Description Req.! | Source?
Province varchar 32 Owner’s province/state data
nullable provider
MailCode varchar 16 Owner’s mailing code data
nullable provider
MailCountry varchar 60 Owner’s country data
nullable provider
EmailAddress varchar 48 Owner’s E-mail address data
nullable provider
PhonelNum varchar 24 Owner’s phone number Yes | data
provider
PhonelType char 4 Owner’s phone type (See| Yes | data
PhoneTypeCfg) provider
Phone2Num varchar 24 Owner’s phone number data
nullable provider
Phone2Type char 4 Owner’s phone type (See data
nullable PhoneTypeCfg) provider
Phone3Num varchar 24 Owner’s phone number data
nullable provider
Phone3Type char 4 Owner’s phone type (See data
nullable PhoneTypeCfg) provider
Phone4Num varchar 24 Owner’s phone number data
nullable provider
Phone4Type char 4 Owner’s phone type (See data
nullable PhoneTypeCfg) provider
PrimaryContactName varchar 48 Name of primary emergency | Yes | data
point of contact provider
PrimaryContactAddressLinel varchar 80 First line of address for primary data
nullable emergency point of contact provider
(e.g., street, apartment, etc.)
PrimaryContactAddressLine2 varchar 80 | Second line of address for data
nullable primary emergency point of provider
contact (e.g., city, province,
country)
PrimaryPhonelNum varchar 24 | Primary emergency contact’s | Yes | data
phone number provider
PrimaryPhonelType char 4 Primary emergency contact’s | Yes | data
phone type (See provider
PhoneTypeCfg)
PrimaryPhone2Num varchar 24 | Primary emergency contact’s data
nullable phone number provider
PrimaryPhone2Type char 4 Primary emergency contact’s data
nullable phone type (See provider

D2NOV05 4-4 C/S D.002 — Issue 1
November 2005
Field Name Type Bytes Description Req.! | Source?
PhoneTypeCfg)
PrimaryPhone3Num varchar 24 Primary emergency contact’s data
nullable phone number provider
PrimaryPhone3Type char 4 Primary emergency contact’s data
nullable phone type (See provider
PhoneTypeCfg)
PrimaryPhone4Num varchar 24 | Primary emergency contact’s data
nullable phone number provider
PrimaryPhone4Type char 4 Primary emergency contact’s data
nullable phone type (See provider
PhoneTypeCfg)
AlternateContactName varchar 48 Name of second emergency data
nullable point of contact provider
AlternateContactAddressLinel varchar 80 First line of address for data
nullable alternate emergency point of provider
contact (e.g., street, apartment,
etc.)
AlternateContactAddressLine2 varchar 80 Second line of address for data
nullable alternate emergency point of provider
contact (e.g., city, province,
country)
AlternatePhonelNum varchar 24 Second emergency contact’s data
nullable phone number provider
AlternatePhonelType char 4 Second emergency contact’s data
nullable phone type (See provider
PhoneTypeCfg)
AlternatePhone2Num varchar 24 | Second emergency contact’s data
nullable phone number provider
AlternatePhone2Type char 4 Second emergency contact’s data
nullable phone type (See provider
PhoneTypeCfg)
AlternatePhone3Num varchar 24 Second emergency contact’s data
nullable phone number provider
AlternatePhone3Type char 4 Second emergency contact’s data
nullable phone type (See provider
PhoneTypeCfg)
AlternatePhone4Num varchar 24 Second emergency contact’s data
nullable phone number provider
AlternatePhone4Type char 4 Second emergency contact’s data
nullable phone type (See provider
PhoneTypeCfg)
Operatorld varchar 16 UserName/Logon Id (See Users Database
Table) or the words “BEACON

D2NOV05 4-5 C/S D.002 — Issue 1
November 2005
Field Name Type Bytes Description Req.! | Source?
OWNER”
Blockld varchar 16 User identification (or login Database
nullable name), specifically for National
data providers only
ChallengeQuestion varchar 64 Challenge question user Yes® | data
nullable selected for supporting re- provider
instatement of password
ChallengeResponse varchar 24 Challenge response user Yes® | data
nullable selected for challenge question provider
for supporting re-instatement of
password
NumLogonFail Tinyint 1 Count of sequential logon database
nullable failures for record. Used to
deactivate record.
RecordStatus char 1 Indicates whether or not record database
is active (See RecordStatusCfg)
AdditionalData varchar 255 | Any other useful information data
nullable about the beacon owner, the provider
vehicle (e.g., tonnage,
superstructure) and/or the
specific usage of beacon.
VehicleType varchar 48 Vehicle code for aircraft, vessel | Yes | data
or personal use. (See provider
EPIRBVehicleTypeCfyg,
ELTVehicleTypeCfg and
PLBVehicleTypeCfg)
VehicleNationality smallint 2 MID country code for vessel data
nullable flag State or aircraft nationality provider
of registration.
VehicleName varchar 48 Name of vehicle or wvessel, | Yes* | data
nullable aircraft make and model provider
MMSI varchar 9 Maritime ~ Mobile Service | Yes*® | data
nullable Identity. Must be exactly 9 provider
numerical characters (0-9) and beacon
extracted country code (first decode
three characters) should match
BeaconCountryCode
Callsign char 10 | Vessel radio call sign (See | Yes*® | data
nullable RadioCallSignCfg) provider
beacon
decode
VehicleRegistrationNumber varchar 16 | IMO number or national vessel/ | Yes* | data
nullable aircraft registration number provider
Color varchar 24 Color of vessel/aircraft data

D2NOV05 4-6 C/S D.002 — Issue 1
November 2005
Field Name Type Bytes Description Req.! | Source?
nullable provider
Length smallint 2 Length of wvessel/aircraft - data
nullable Allowable range: 10 to 2000 provider
Aircraft24BitAddress char 6 24-bit address of the aircraft, data
nullable expressed as 6 hexadecimal provider /
characters beacon
decode
PeopleCapacity smallint 2 Vehicle capacity in numbers of data
nullable people - Allowable range: 1 to provider
10000
VehicleCellularNum varchar 24 Cellular Telephone associated data
nullable with Vehicle provider
Phonelnmarsat varchar 24 INMARSAT telephone number data
nullable provider
RadioEquipment varchar 32 Radio equipment on board data
nullable vessel/aircraft or person (See provider
RadioEquipmentCfg)
SurvivalTypelNum smallint 2 Number of survival equipment data
nullable provider
SurvivalTypelDesc varchar 64 Description of survival data
nullable equipment provider
SurvivalType2Num smallint 2 Number of survival equipment data
nullable provider
SurvivalType2Desc varchar 64 Description of survival data
nullable equipment provider
AircraftOperatingAgency varchar 64 Aircraft operating agency data
nullable designator and operator’s provider
serial number.

1. Abbreviation for “User Input Required”.
2. Where the source indicates “data provider / beacon decode”, the field will be automatically provided by the IBRD beacon

decode software, whenever possible.

3. Mandatory for Data Providers (individual beacon owners) only, not mandatory when registration is controlled by a

National Data Provider.
4. Not required for PLBs.
5. Not required for ELTs.

Primary Key — Benld15
Index 1 — OwnerName
Index 2 — VehicleName
Index 3 — CallSign

Index 4 — VehicleRegistrationNumber

Index 5 — MMSI
Index 6 — VehicleType
Index 7 — LastEditDate

Index 8 — ConfirmPrintDate

Index 9 — Blockld

D2NOV05 4-7 C/S D.002 — Issue 1
November 2005

4.2 BeaconActivationMethodCfg
4.2.1 Purpose

The purpose of the BeaconActivationMethodCfg table is to store all the valid
values for the beacon activation method for EPIRB beacons.

4.2.2 Table Layout

Field Name Type Bytes | Description
BeaconActivationMethod Char 4 Values:
CATO
CAT1
CAT2

BeaconActivationMethodDescription | Varchar 40 | Values:

Category 0 - no data provided
Category 1 - Automatic or Manual
Category 2 - Manual only

Primary Key — BeaconActivationMethod

4.3 BeaconHomingDeviceCfg
4.3.1 Purpose

The purpose of the BeaconHomingDeviceCfg table is to store and provide a
lookup for all the valid values for homing frequencies or devices.

4.3.2 Table Layout

Field Name Type Bytes | Description

BeaconHomingDeviceType Char 1 Values:
1
S
@]
N

BeaconHomingDeviceDescription | Varchar 16 | Values:
121.5 MHz
SART
Other
None

Primary Key — BeaconHomingDevice

D2NOV05 4-8 C/S D.002 — Issue 1
November 2005

4.4 BeaconRegTypeCfg
4.4.1 Purpose

The purpose of the BeaconRegTypeCfg table is to store all the valid values for the
registration type.

4.4.2 Table Layout

Field Name Type Bytes | Description

BeaconRegType tinyint 1 Valid Values:

0

1

2

Additional Unused values:
3

7

8

9

BeaconRegName varchar 16 | Valid Values:

EPIRB

ELT

PLB

Additional Unused values:
SSAS

Test

Orbitography

National Use

Primary Key — BeaconRegType
Index (unique) — BeaconRegName

45 BeaconTypeCfg
4.5.1 Purpose

The purpose of the BeaconTypeCfg table is to store all the values for many different
types of beacons, based on protocol.

4.5.2 Table Layout

Field Name Type Bytes | Description

BeaconType varchar 32 | Values:
ELT 24 BIT ADDRESS (STD)
ELT A/C OPERATOR (STD)

D2NOV05 4-9 C/S D.002 — Issue 1
November 2005

Field Name Type Bytes | Description

ELT AVIATION USE
ELT SERIAL (NATIONAL)

ELT SERIAL (STANDARD)

ELT SERIAL A/C 24BIT ADDRESS
ELT SERIAL A/C OPERATOR
ELT SERIAL AVIATION

EPIRB MARITIME USER

EPIRB MMSI (STANDARD)
EPIRB RADIO CALL SIGN
EPIRB SERIAL (NATIONAL)
EPIRB SERIAL (STANDARD)
EPIRB SERIAL CATEGORY |
EPIRB SERIAL CATEGORY I
NATIONAL USER
ORBITOGRAPHY
ORBITOGRAPHY (RESERVED)
PLB SERIAL

PLB SERIAL (NATIONAL)

PLB SERIAL (STANDARD)
TEST

TEST (NATIONAL)

TEST SERIAL (STANDARD)

Primary Key — BeaconType
4.6 ConfirmationStatusCfg
4.6.1 Purpose

The purpose of the ConfirmationStatusCfg table is to store all the valid values for the
status types of the “request for confirmation” process.

4.6.2 Table Layout

Field Name Type Bytes | Description

ConfirmationStatus char 4 values:

SENT — means that a confirmation
request has been sent out

UDEL — means that a confirmation
request has been marked as
undeliverable by database
administrator

CFRM — means that a confirmation
request has been Acknowledged on
line (no changes were needed)

D2NOV05 4-10 C/S D.002 — Issue 1

November 2005

Field Name Type Bytes | Description

CHGE - default value in effect which
means that changes have been made
and hence confirmation is implied

Not Used — appropriate translations

ConfirmationStatusDescription | yarchar 50 | are pulled from formlabel properties

files

Primary Key — ConfirmationStatus

4.7 PhoneTypeCfg
4.7.1 Purpose
The purpose of the PhoneTypeCfg table is to store and provide a lookup for all the
valid values for the types of telephone numbers for a beacon registration.
4.7.2 Table Layout
Field Name Type Bytes | Description
PhoneType char 4 Values:
HOME
WORK
CELL
FAX
OTHR
PhoneTypeDescription | varchar 10 Not Used — appropriate translations are
pulled from formlabel properties files

Primary Key — PhoneType

4.8

RadioCallSignCfg
4.8.1 Purpose

The purpose of the RadioCallSignCfg table is to store all the valid range values for the
radio call signs for each organization (country name). Each organization (country
name) is assigned a range of Call Sign Series. Based on the beacon identification
code’s encoded country code a country name is determined from the MidInfoCfg table.

Validation Logic: If there is not a match between the encoded country code (i.e., the
country name it maps to) and the call sign’s associated country name, a warning
message will be generated.

D2NOV05

4-11 C/S D.002 — Issue 1
November 2005

4.8.2 Table Layout

Field Name Type Bytes | Description

CallSignFirst char 3 First Call Sign Series associated with an
Organization (Country Name)

CallSignLast char 3 Last Call Sign Series associated with an
Organization (Country Name)

OrgName varchar 16 | Owners’ Organization (Country Name)

associated with Call Sign Series First and
Call Sign Series Last

Primary Key — CallSignFirst, CallSignLast, OrgName

4.9 RadioEquipmentCfg

4.9.1 Purpose

The purpose of the RadioEquipmentCfg table is to store all the valid values for
the types of radio equipment on board a vessel or aircraft. This table provides a
lookup of valid radio equipment types.

When multiple radio equipment options (check boxes) are selected, the data to
store in the Beacon Registration table stores these multiple selections separated
by a commas. Under the option “Other” the user is permitted to type in their own
radio equipment type. If the user selects the option “Other”, and still leaves the
text blank, then the actual text “Other” will be inserted.

4.9.1 Table Layout

Field Name

Type

Bytes

Description

RadioEquipment

varchar

Values:
VHF
HF

MF
SSB
Other

Primary Key — RadioEquipment

4.10 RecordStatusCfg

4.10.1 Purpose

The purpose of the RecordStatusCfg table is to store all the valid values for
the record status. This table provides a lookup of valid record statuses to

D2NOV05 4-12 C/S D.002 — Issue 1
November 2005

capture whether a beacon record is active or deactivated (due to lockout for
password entry failures).

4.10.2 Table Layout

Field Name Type Bytes | Description

RecordStatus char 1 Values:
A
D

RecordStatusDescription | varchar 20 | Values:
Active
Deactivated

Primary Key — RecordStatus
Index 1 (unique) — RecordStatusDescription

4.11 RolesCfg
4.11.1 Purpose
The purpose of the RolesCfg table is to store access role information to
determine the type of user. This information is used to determine the ability

of users to perform different functions in the application.

411.2 Table Layout

Field Name Type Bytes | Description

Roleld int 4 Role ldentifier
Values:

1

2

3

4

RoleName varchar 30 Role Name

Values:

BLOCK USER (National Data Provider)
SHIP SURVEYOR USER

SYSTEM MANAGER (Database Admin.)
SAR USER (SAR Services)

Primary Key — Roleld
Index (unique) — RoleName

D2NOV05

4-13 C/S D.002 — Issue 1
November 2005

4.12 SpecialStatusCfg

412.1 Purpose
The purpose of the SpecialStatusCfg table is to store all the valid values for
the changes in status regarding the beacon in the database.
4.12.2 Table Layout
Field Name Type Bytes | Description
SpecialStatus varchar 16 | Values:
LOST
STOLEN
SOLD
REPLACED
DESTROYED
OUTOFSERVICE

(NULL = Normal Status)

SpecialStatusDescription | varchar 30 Not Used — appropriate translations are

pulled from formlabel properties files

Primary Key — SpecialStatus

4.13 ELTVehicleTypeCfg

4.13.1 Purpose
The purpose of the ELTVehicleTypeCfg table is to store and provide a
lookup for all the valid values for the vehicle type of aircrafts associated
with ELT beacons.
Under the option “Other” the user is permitted to type in their own radio
equipment type. If the user selects the option “Other”, and still leaves the
text blank, then the actual text “Other” will be inserted.

4.13.2 Table Layout

Field Name Type Bytes | Description

ELTVehicleType

varchar 48 | Values:

Single-engine Propeller
Single-engine Jet
Multi-engine Propeller
Multi-engine Jet
Helicopter

Other

Primary Key — ELTVehicleType

D2NOV05

4-14 C/S D.002 — Issue 1
November 2005

4.14 EPIRBVehicleTypeCfg

4.14.1 Purpose
The purpose of the EPIRBVehicleTypeCfg table is to store and provide a
lookup for all the valid values for the vehicle type of vessels associated with
EPIRB beacons.
Under the option “Other” (two cases, POWER or NON-POWER) the user
IS permitted to type in their own radio equipment type. If the user selects
the option “Other”, and still leaves the text blank, then the actual text
“Other” will be inserted.

4.14.2 Table Layout

Field Name Type Bytes | Description
EPIRBVehicleType varchar 48 | Values:

SAIL (prompts an entry for number
of Masts. Text in database
appears as "SAIL nn Masts")

POWER Fishing
POWER Tug

POWER Cargo
POWER Tanker
POWER Pleasure Craft
POWER “Other”
NON-POWER Life Boat
NON-POWER Life Raft
NON-POWER “Other”

Primary Key — EPIRBVehicleType

4.15 PLBVehicleTypeCfg

4151

Purpose

The purpose of the PLBVehicleTypeCfg table is to store and provide a
lookup for all the valid values for the vehicle type associated with the
specific use of PLB beacons.

Under the option “Other” the user is permitted to type in their own radio
equipment type. If the user selects the option “Other”, and still leaves the
text blank, then the actual text “Other” will be inserted.

D2NOV05 4-15 C/S D.002 — Issue 1
November 2005
4.15.2 Table Layout
Field Name Type Bytes | Description
PLBVehicleType varchar 48 | Values:
Land Vehicle
Boat
Aircraft
None
Other

Primary Key — PLBVehicleType

4.16 UsageMorelnfoCfg

4.16.1 Purpose
The purpose of the UsageMorelnfoCfg table is to store and provide a
lookup for all the valid values for additional usage information pertaining to
PLB beacons.
Under the option “Other” the user is permitted to type in their own radio
equipment type. If the user selects the option “Other”, and still leaves the
text blank, then the actual text “Other” will be inserted.
4.16.2 Table Layout
Field Name Type Bytes | Description
UsageMorelnfo varchar 24 | Values:
Fishing
Hunting
Hiking
Other

417.1

Primary Key — UsageMorelnfo

4.17 PasswordChallengeCfg

Purpose

The purpose of the PasswordChallengeCfg is to hold the values for
challenges questions that are used by the system to provide forgotten
passwords to beacon owners. There are actually four tables to support the
multi-lingual interface each containing the name of the language, English,
French, Russian and Spanish (e.g., PasswordChallengeEnglishCfg).

D2NOV05 4-16 C/S D.002 — Issue 1

November 2005
4.17.2 Table Layout
Field Name Type Bytes | Description
ChallengeQuestion varchar 64 | Values — Given here in English — other

languages in each table as stated above:

What is the name of your favourite movie?
What is the name of your favourite teacher?
What is the name of your pet?

What is your favourite sports team?

What is your mother’s maiden name?

What was the name of your high school?
What was your childhood hero?

Primary Key — ChallengeQuestion
4.18 MailCountryCfg
4.18.1 Purpose

The purpose of the MailCountryCfg table is to store and provide a lookup
for all the valid values for country names stored in the beacon owner’s
mailing address. The interface as implemented at the time of Acceptance
Testing only provides this listing (or pull-down menu) in the English
Language.

4.18.2 Table Layout

Field Name Type Bytes | Description

MailCountry varchar 60 | Values:
(Too lengthy for practical listing here)

Primary Key — MailCountry

- END OF SECTION 4 -

D2NOV05 5-1 C/S D.002 — Issue 1
November 2005

5. J2EE BACKGROUND

The Main IBRD Application is built using Java 2 Enterprise Edition (J2EE) technology. As
such, some general background on this paradigm is provided.

5.1 EAR Structure

A J2EE application is packaged as a portable deployment unit called an enterprise archive
(EAR) file. An EAR file is standard Java Archive File (JAR) file with an .ear extension. An

EAR file contains:

e One or more J2EE modules
e One J2EE application deployment descriptor

Creation of a J2EE application is a two-step process. First, application software developers
create various client modules. Second, the application assembler packages these modules
together to create a J2EE application module that is ready for deployment. In the case of the
IBRD System, these modules consist of one Web archive (WAR) file and several JAR files,
two custom and several open source third-party modules. Section 5.2, just below, provides
further information on WAR files. The IBRD EAR file also contains two more files, a
deployment descriptor file (application.xml) and a manifest (manifest.mf) file, which clearly
help to define the deployment structure. More details on the IBRD deployment structure are
provided in Section 6.1 below.

All J2EE modules are independently deployable units. This enables software developers to
create independent units of functionality without having to implement full-scale applications.
To assemble an application, an application assembler resolves dependencies between
components by creating links in the corresponding modules' deployment descriptors. Each
component may have dependencies on other components within the same archive, on
components in different archives, or both. All such dependencies must be resolved before
deployment.

5.2 WAR Structure

A Web module is packaged and deployed as a Web archive (WAR) file, a JAR file with a
.war extension. It is the smallest deployable and usable unit of Web resources. A Web
module may contain:

o Java class files for the servlets and the classes that they depend on,
optionally packaged as a library JAR file

JSP pages and their helper Java classes

Static documents (for example, HTML, images files, etc)

Applets and their class files

Web deployment descriptor

D2NOV05 5-2 C/S D.002 — Issue 1
November 2005

Unlike other deployment unit types, a WAR file usually cannot be loaded by a ClassLoader,
because its internal folder structure differs from that of a loadable JAR file. Like other
module types, a WAR file may be deployed independently as a Web application or packaged
in an EAR file and deployed as a J2EE application.

The Web module is the smallest indivisible unit of Web resources that an application
component provider supplies to the application assembler. Understanding how Web
application components map into a server address space requires an understanding of the
structure of a request Uniform Resource Identifier (URI). The URI representing a request to
a Web component is called a request path. After the protocol and hostname, a request URI
has the following components:

e The context path locates the Web application in the Web server's namespace at
deployment time. It can be thought of as the path to the "root folder" of a Web
application (called the context root), relative to the root of the Web server namespace.
A context path is always either empty (meaning that the root of the Web application is
the root of the Web server namespace) or it both begins with a slash and does not end
with one.

e The servlet path is the part of the URI that matched the servlet mapping for the
request. It appears directly after the context path and never begins with a slash.

e The path info is any part of the request URI that is not part of the context path or the
servlet path that follows the server path but precedes the query string. The HTTP
GET query string, for example, typically appears as path info. Path info may be
empty.

Given the following request example: https://localhost/IBRD/Dispatch?page=Start; the
context path is “/IBRD/”, the servlet path is “/Dispatch?”, and the path info is “page=Start”.
Except for URL encoding details, a valid request URI is always a context path, followed by a
servlet path, followed by path info.

The Java Servlet specification defines a mandatory folder structure for a Web application
deployment unit. The Web application folder structure applies to the internal structure of a
WAR file. The Java Servlet specification recommends, but does not require, that this same
structure also be used as a runtime representation. Figure 5.1 below shows this structure
graphically.

https://localhost/IBRD/Dispatch?page=Start

D2NOV05 5-3 C/S D.002 — Issue 1
November 2005

JSP Pages,
HTML,
applet clagses,
ele,
lity classes
ajar | b.class |

Figure 5.1 Web Application Folder Structure

The root folder of the Web application is the context root, which is mapped to the context
path at deployment time. The context root contains the application's JSP pages, content,
graphics, applet classes, and other files that the application serves to clients. These files are
shown on the right in the above figure. Also under the context root is the WEB-INF folder,
which contains files that are not intended to be served to clients. The WEB-INF folder has a
specific structure, and has the following contents:

e The deployment descriptor file, called web.xml

e A folder called lib, which may contain JAR files that will automatically be
added to application components' classpath at runtime. Third-party
libraries often reside in this folder.

e A folder called classes, which contains any classes needed by the
application that are not in a JAR file. Such classes must be organized in
folders by package, as usual.

The IBRD System follows this structure in general terms. For more details on the IBRD
WAR file see Section 6.1 below.

- END OF SECTION 5 -

D2NOV05 5-4 C/S D.002 — Issue 1
November 2005

Page left blank

D2NOV05 6-1 C/S D.002 — Issue 1
November 2005

6. MAIN APPLICATION STRUCTURE

6.1 IBRD Deployment Structure

The Main IBRD Application is deployed as two archive files. The core application is
completely supported by a single IBRD Enterprise Archive file which is named, IBRD.ear.
All required components are stored in this archive.

Additionally, one JAR file which is contained within the EAR file is also deployed
separately. Deployed in this fashion, a file named IBRD _util.jar file provides a second and
independent point of entry for the “Request for Confirmation” process which is run as a
“stand-alone” scheduled task. The IBRD util.jar file is discussed below in Section 6.1.3, and
the “Request for Confirmation” process is discussed further in Section 8.12.

6.1.1 Overall Structure of EAR File

The IBRD EAR consists of the following files:

activation.jar
jacob.jar
mail.jar
Xerces.jar
IBRD.war
IBRD_util.jar
IBRDEJB.jar
application.xml
manifest.mf

The activation.jar, mail.jar, jacob.jar and xerces.jar are all JAR files from third
party open source providers. The IBRD.war, IBRD_util.jar and IBRDEJB.jar
contain custom software developed specifically for this application although
some of the Enterprise Java Beans (EJB) would qualify as third party open source
code, customized as appropriate.

The application.xml file is the XML deployment descriptor for the EAR file and
is located in the META-INF subfolder of the application archive. The
application.xml file contains information about the modules that comprise the
EAR file. The application.xml file is discussed in more detail in Section 8.1.

The Manifest.mf is a file which commonly consists of a list of the files present
within the archive itself. However, not all files in the archive need to be listed in
the manifest and although a manifest file is accordingly included in the EAR file
and each other archive file as well, it is largely unused providing only a
preliminary section containing, at minimum, this standard's version number and
the list of third party JAR files as appropriate for the archive.

D2NOV05 6-2 C/S D.002 — Issue 1
November 2005

6.1.2 Third Party JAR Components

The activation.jar and mail.jar are implementation packages of the JavaMail API,
a set of APIs that model a mail system. The activation.jar contains Java class
files that are a part of the JavaBeans Activation Framework (JAF). The JavaMail
API uses the JAF for data content handling of the email. The mail.jar contains
Java class files that implement the core JavaMail packages which provide
facilities for reading and sending email and supports multiple protocols and
service providers including SMTP, IMAP and POP3.

The jacob.jar contains the Java class files that support JNI interface to perform
native calls to COM and Win-32 libraries (such as the Beacon Decode DLL).
The xerces.jar provides a parser for the eXtensible Markup Language (XML) and
contains the Xerces Java Parser that comes packaged with API documentation for
SAX and DOM, the two most common interfaces for programming XML. The
Xerces Java Parser is used for parsing some of the XML properties files that
contain customizable and deployment information for the main IBRD application.

6.1.3 WAR File

The IBRD Web Archive file is called IBRD.war. The IBRD WAR consists of
multiples files and folders that contain all the files for what is considered the
“web application”. Specifically, this file focuses on all of the mechanisms that
pertain to the front-end or user interface with the other two IBRD JAR files
providing supporting functions or back-end capabilities.

As described in Section 5.2 above, several subfolders are found within the WAR
file, which contain the various elements that combine to provide the “web
application”. This structure is briefly outlined here with further folder specific
details in provided in Section 6.2 just below and module to module mappings
provided in detail in Section 7.

The user interface itself, is largely provided by Java Server Pages (JSP). These
JSPs are dynamic files that create the application’s HTML which in turn is
presented to end users. These files are found in the jsp\ subfolder of the archive.
The resources\ subfolder contains the Properties files that provide various on
screen text in the multiple languages of the IBRD interface. Each with additional
subfolders for multi-lingual support, the help\ folder contains the applicable
HTML, the images\ folder contains various GIF and JPEG formats and the js\
folder contains Java Scripts. Finally the css\ folder contains the single cascading
style sheet for the main IBRD application. There is also a meta-inf subfolder
which holds the single manifest.mf file.

Again as described in Section 5.2 above, all code served up by the Application
Server (however not visible to the client) is stored in the WEB-INF folder. The
subfolders under the \WEB-INF\classes\ folder contain all the class files directly
needed by the JSPs which includes the Tag Library classes (subfolder
taglib\form\) and various user interface support including Servlets (subfolder ui\).
Several other software configuration/control files are stored in the WEB-INF

D2NOV05 6-3 C/S D.002 — Issue 1
November 2005

folder. The web application deployment descriptor, named web.xml, is here as
well as several other supporting software configuration/control XML files:
dbreg.xml, acl.xml, jrun-resources.xml and log4j.xml. Finally, the WEB-INF
folder in the WAR file contains two custom tag library descriptor files, noaa-
form.tld and noaa-framework.tld. All of these files configuration/control are
further discussed in associated subsections of Section 8

6.1.4 IBRD_util JAR File

All the underlying or complex or back-end support for the web application (IBRD
WAR file), other than EJB components, are found in the IBRD_util.jar archive
file. Other than the set of resource Properties files for multi-lingual support, all
files in this Java archive are Java class files. The subfolders for classes include:
complex\, complex\tools\, exception\, framework\, log\ and reporting\.
Descriptions for these subfolders can be found below in Section 6.2. There is
also a meta-inf which holds the single default format manifest.mf file. As noted
above, this one archive is deployed separately as well as within the IBRD EAR
file to support the independently executed “Request for Confirmation” process.

6.1.5 EJB JAR File

The IBRDEJB.jar contains all of the Java class files for the EJB components of
the main IBRD application. The subfolders for classes include: complex\ejb\,
framework\ejb\, log\ejb\ and reporting\ejb\. Descriptions for these subfolders can
be found below in Section 6.2. There is also a meta-inf subfolder which holds a
minimal information manifest.mf file as well as a deployment descriptor for all
the EJBs, named ejb-jar.xml. This deployment descriptor is further discussed in
Section 8.4.

6.2 Software Development/Deployment Folder Structure

In the development environment, the IBRD software is laid out in a set of folders similar by
definition to the deployment structure discussed above. Before proceeding to Section 7
which details the various mappings of between front-end interface modules (JSP, HTML etc.)
and the associated underlying support modules (Servlets, Java Beans, etc.) it is useful to
discuss the overall layout and categorization of modules and folders. For more information
on software development see Sections 9.

Figure 6-1 below shows the major folders and subfolder within the software development
folder. Brief descriptions of the related contents of the various subfolders follow. Relative to
Java “package” specifications it is useful to note that the folder name “cs\ibrd\” translates to
the same package prefix “cs.ibrd.” for all Java classes in the main IBRD application. Several
cases may be noted under the “web” subfolder where there are four additional subfolders with
the names, English, French, Russian and Spanish. In the IBRD System, the facilities under
the “Login” point of entry are only provided only in English where as those found under the
“Data Provider Welcome Page” (index.jsp) are multi-lingual. In each of these situations, the
main subfolder contains files that pertains predominately users who use the “Login”
(Login.jsp) page (SAR Users, Ship Surveyors and Database Administrators) and the four

D2NOV05 6-4 C/S D.002 — Issue 1
November 2005

language subfolders clearly hold the analogous files for the multi-lingual portion of the user
interface.
[=1 |2) Beacon Decode
|2) BeaconDecode DLL
[# |7) ReagBenDecode LIB
) build
B I cs
= () ibrd
= 12 complex
) eb
I tools
|) exception
=) framework
i) eb
B) log
) eb
= 12 reporting
) eb
=) taglib
I3 fom
_:J ui
I3 doc
I jars
= 1) web
i) css
E 1) help
I2) English
|2) French
() Russian
| Spanish
=) images
() English
I2) French
|2 Russian
|) Spanish
EiDis
(2 English
I3) French
() Russian
[Spanish
2 isp
|2) resources
i) WEB-INF

Figure 6.1— Software Folder Structure

A brief description of the folder and subfolder contents is given as follows for the structure
shown above in Figure 6.1:

Folders for the WAR File and Front-End Interface

e web\css — This folder contains the IBRD cascading style sheet used for Font
declarations, color mappings and other layout settings for JSP and HTML objects.

e web\help — This folder and its subfolders contains the HTML files for all help pages
that are accessed within the application.

D2NOV05 6-5 C/S D.002 — Issue 1

November 2005

web\images — This folder contains the .GIF and .JPG files that have the images for the
application (e.g., background, logos, interface buttons).

web\js — This folder contains all of the JavaScript files used to support JSP and
HTML objects.

web\jsp — This folder contains all of the Java Server Pages (JSPs) to support the IBRD
application. For all the web pages of the application, JSPs are used to build the
HTML for dynamic data display and processing.

web\resources — This folder contains the Properties files for the application that
contain on screen labeling and errors messages. There are two sets of four language
files, one set for form entry labels and the other set for error messages.

web\WEB-INF — This folder contains the application data that is not accessible from
browser access and is only available to the application server. This folder contains
XML files which store customizable data used by the application. Areas include
access control and authentication (acl.xml), beacon table data declarations
(dbReg.xml), logging set up parameters (log4j.xml) and web application environment
settings (web.xml). Additionally, this folder contains tag library files (TLD files) to
be used with the tag library Java code for setting of tag specifications (noaa-form.tld
and noaa-framework.tld). For more information on each these files see the associated
subsections of Section 8.

cs\ibrd\taglib\form — This folder contains the Java classes used for the custom tag
libraries which dynamically create HTML for many of the form objects. These
custom tags include Drop Down lists, Pick lists, Radio lists, Text Area inputs and
Text Field inputs among others.

cs\ibrd\ui — This folder contains the Java classes for the all of the application Java
Servlets, the Java Beans and supporting classes for data entry and data validation.
Servlet classes usually contain Servlet in the class name, the Bean classes usually
contain Bean in the class name and the Field Validation classes usually contain FV in
the class name.

Folders for Back-End Support: IBRD_util.jar and IBRDEJB.jar

cs\ibrd\complex — These folders contain the Java classes (includes EJBs and tools) for
the Complex and Background Processing components that are used for Beacon
Access (Code Values for Configuration tables, View and Update), Beacon Query
(Search\Filter), Email Transmit Subsystem and Request for Confirmation process.
cs\ibrd\exception — This folder contains the Java classes for handling various IBRD
application exceptions (errors in “object oriented” / Java terminology).
cs\ibrd\framework — These folders contain the Java classes (includes EJBs) for the
components in the “framework” or internal workings of the application. These
components are the shared code for Configuration data access, the Login mechanism
for all types of users, and the base Servlets that are used as the parent class for
inheritance for all the application Java Servlets. This folder also contains code that is
shared between the User Interface as well as the Complex and Background Processing
components such as for application constants and utilities for accessing the EJBs.
cs\ibrd\log — These folders contain the Java classes (includes EJBs) for the logging
mechanism within the application. These classes are built to support the open source
Log4J logging package that has been customized for IBRD application needs. This
logging supports: Database Change logging, Email logging, Query Access logging,
User Access logging, record Transaction logging, and error/exception logging.

D2NOV05 6-6 C/S D.002 — Issue 1

November 2005

cs\ibrd\reporting — These folders contain the Java classes (includes EJBs) to support
the Reporting functionality for both the event tracking and report presentation
processes.

Miscellaneous Folders

BeaconDecode — This folder contains two subfolders. One subfolder (RegBcnDecode
LIB\) contains the core C++ code that provides the Beacon Decode functionality
itself. The other subfolder (BeaconDecode DLL\) contains C++ code that provides
the JNI interface and results in the actual DLL (IBRD_ BeaconDecode.dll) that is
called from the Java code of the main IBRD application.

jars — This folder contains several third-party open source Java Archive files (JARS)
that are needed for the IBRD application. Included are support for: the mail process
(application.jar and mail.jar), XML processing (xerces.jar), Beacon Decode library
interface (jacob.jar), Logging (log4j-1.2.4.jar) and basic J2EE core support (J2EE.jar).
build — This is a temporary storage folder for the results of a “build” operation for the
main IBRD application. Specifically, all the custom JAR (IBRD_util.jar and
IBRDEJB.jar), WAR (IBRD.war) and eventually the IBRD EAR (IBRD.ear) files are
created in this folder as well as all the individual class files in appropriately structured
subfolders.

doc — This is a temporary storage folder for documentation automatically generated
by JavaDoc.

- END OF SECTION 6 -

D2NOV05 7-1 C/S D.002 — Issue 1
November 2005

7. MAIN APPLICATION MODULE MAPPINGS

The following table maps the front-end pages and general functions in the IBRD system to
the underlying JSP, package subfolder and help page as applicable associated with the page
or function. The table provides a generalized mapping of pages and functions relative to the
resources that they use. Other views of the software modules and their interdependencies can
be generated with industry standard tools such as JavaDoc.

It is useful to note that where “National Data Provider” support is provided, the underlying
code will usually use “block™ in the class (or file) name. This is due to the origin of the
application software where a similar functionality already existing for owner of a “block” of
beacons. The concept of a “block” (e.g., many beacons owned by one business) was
extended and modified to provide the “National Data Provider” functionality. It may also be
useful to note that “Data Providers” are analogous to “Beacon Owners” with similar effect on
the historical names of class (and hence files). Finally, usage of “NOAA” in a file name is
analogous to support for Database Administrators and/or the general system, once again
coming from the origins of the software as a USA based system housed at NOAA facilities.

Wherever pages or functions are virtually the same under different user scenarios, the page is
only mentioned once. For example, all users who have the capability to update an existing
record (Data Providers, National Data Providers and Database Administrators) will see
essentially the same page and hence this functionality only appears once in the following
table. However, relative to the various user types, the interface differs somewhat more
significantly when viewing a beacon, resulting in perhaps a different help page etc. and hence
these functions appear in multiple rows as applicable.

D2NOV05

C/S D.002 — Issue 1

November 2005

Table 7.1 Module Mappings

Page / Function JSP (*.jsp) Package Class / Servlet (*.java) | Help Page (*.htm)
Data Providers
Language Selection index ui LanguageServlet
Agreement / Disclaimer Agreement
Data Provider Welcome DataProviderWelcome
Data Provider Login BO login framework LoginServlet BO login_help
National Data Provider Login | BU login framework LoginServlet BU login_help
Beacon password reminder BO_request_pwd framework RequestPassword BO_request_pwd_help
password_mailed
National Data Provider BU_request_pwd, framework RequestPassword BU_request_pwd_help
password reminder password_mailed
Data Provider Home page BeaconForm ui BeaconFormServlet owner_beacon_view_help
Registration new beacon register_new_beacon framework LoginServlet.java register_new beacon_help
Update existing beacon BeaconForm ui BeaconFormServlet owner_beacon_update_help
BeaconUpdateServlet beacon_registration fields_help
Acknowledge Confirmation ConfirmStatus ui ConfirmStatusServlet confirm_status_help
Request
Change beacon status BeaconStatus ui BeaconStatusServlet lost_stolen help
Change beacon password BeaconPassword ui BeaconPasswordServlet changepassword _help
National Data Provider Home | BlockHome ui BlockHomeServlet block_beacon_owner_homepage help
page
National Data Provider View BeaconForm ui BeaconFormServlet block_beacon_view_help
beacon
Upload Records BlockHome ui BlockHomeServlet
GetBulkUploadFile GetBulkUploadFileServlet
Assign beacon to National List | AssignBeacon ui AssignBeaconServlet block add beacon help
Remove beacon from National ui BlockHomeServlet

List

Unsupported country code

UnsupportedCC

D2NOV05

C/S D.002 — Issue 1
November 2005

Page / Function JSP (*.jsp) Package Class / Servlet (*.java) | Help Page (*.htm)
SAR Users and
Ship Surveyors
User Login Login framework LoginServlet login help
Agreement / Disclaimer SarAgreement
Search options and results NOAAHome ui SearchServlet sar_search beacons help
View registered beacon BeaconForm ui BeaconFormServlet sar_beacon_view_help

BeaconUpdateServlet
Database Administrator
Search options and results NOAAHome ui SearchServlet search_beacons_help
Manage beacon account ManageBeacon ui ManageBeaconServlet manage beacon_help
Access National Beacons AccessBlock ui AccessBlockServiet
Report Options ReportOptions ui ReportOptionsServlet report_help
Report BeaconReport ui
Administration Find Accounts | AccountSearch ui AccountSearchServlet admin_help
User Accounts Listing RegisteredAccounts ui AccountSearchServlet queried_accounts_help
Add new user account add_account ui AddAccountServlet add_account_help
Update user account add_account ui AccountManagerServlet update_account_help
Delete user account RegisteredAccounts ui AccountSearchServlet
View Points of Contact CountryCodes ui CountryCodesServlet
Footers
Log Out HomeServlet
Home footer_redirect HomeServlet
Help help

general help

Feedback survey survey FeedbackSurveyServlet survey help
Contact us ContactUs
Privacy policy privacy

D2NOV05

C/S D.002 — Issue 1
November 2005

Page / Function JSP (*.jsp) Package Class / Servlet (*.java) | Help Page (*.htm)
Complex / Background
Authentication framework NOAAServlet

framework.ejb

LoginServlet
RequestPasswordServlet

Access Control

framework
framework.ejb

NOAAServlet
ValidationServlet
DispatchServlet

Session Management

framework
framework.ejb

LoginServlet
DispatchServlet

(entire folder)

Exception Handling exception
Request for Confirmation complex TwoYearCimRequest
TwoYearCfmRequestDAO
TwoYearCfmRequestServlet
Logging log (entire folder)
log.ejb
Reporting reporting (entire folder)

reporting.ejb

- END OF SECTION 7 -

D2NOV05 8-1 C/S D.002 — Issue 1
November 2005

8. INTERNAL STRUCTURES AND SUPPORTING ELEMENTS

The following subsections discuss major software configuration structures as well as some
significant supporting software elements for the IBRD System. Various files discussed
below contain information that provides for internal software customization of IBRD
application. The information held in these elements encompass a wide range of settings that
include: module names, data source names for accessing databases, web application names
for servlets, access control for pages based upon user roles, email templates and defaults, and
application specific parameters. There are also many SQL configuration tables that control
the behavior of the IBRD system. Most of these tables are discussed above in Section 4. The
purpose of all these files and tables is to configure the application at “compile” (or build)
time.

Within the IBRD application software, eXtensible Markup Language (XML) files provide
data or information to the application in a text based format that uses tags analogous to those
found in Hyper Text Markup Language (HTML) files. These XML tags have starting and
ending delimiters of the form “<tagname></tagname>" and are often nested. Information
needed by the software is obtained by parsing these files. For further details regarding XML,
appropriate related documentation should be consulted. The XML files that are used by the
IBRD application are discussed accordingly in the following subsections.

Much like XML files, “Properties™ files are text files that also provide information to the
IBRD application. In this case the format is essentially limited to individual lines containing
a <name/key>=<value> format. Again information needed by the software is obtained by
parsing these files which are discussed below.

8.1 Application Deployment XML Descriptor

This file is named “application.xml” and is dynamically generated during a system build from
the file named “application-template.xml” file which is found in the root of the software
development folder. The “application.xml” file is the deployment descriptor for the EAR
file, and during a build is stored in the “META-INF” subfolder of the application archive
itself. The “application.xml” file contains information about the modules that are found in
the EAR file.

The “application.xml” file must begin with the following DOCTYPE declaration. It should
be noted that all XML files used by the IBRD application contain this same declaration:

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application 1 2.dtd">

Example “application.xml" file (initial deployment for Acceptance Testing):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application 1 2.dtd">
<application>
<icon><small-icon>smallIcon.gif</small-icon></icon>
<display-name>IBRD</display-name>

D2NOV05 8-2 C/S D.002 — Issue 1
November 2005

<description>J2EE Application</description>
<module>
<ejb>IBRDEJB.jar</ejb>
</module>
<module>
<web>
<web-uri>IBRD-war</web-uri>
<context-root>IBRD</context-root>
</web>
</module>
</application>

The following tags in the application.xml file are noted:

e <application></application> - contains tags about the application to be deployed

e <display-name></display-name> - contains the name of the application that is
displayed in the application server console

e <module></module> - contains tags about the different modules that comprise the
application (in the example above, there are EJB and Web modules).

e <ejb></ejb> - contains the name of EJB JARs which contain the Enterprise Java
Beans for the application (for business logic and data access)

e <web></web> - contains the name of the Web application WAR and the context
root for the URI

e <context-root></context-root> - defines the context root for the application.
Specifically, in the URL used for the IBRD system (e.g., www.cospas-
sarsat.org\ibrd\) this is how the “\ibrd\” portion is properly mapped to the
application software.

8.2 JRun Resource XML Descriptor

This XML file specifies all of the JRun resources for a JRun server and contains
configuration information for all J2EE Resource Factories: JDBC, JMS, Mail, and URL. The
“jrun-resources.xml” file can be used by JRun to configure many application server resources
as J2EE applications typically share certain resources. This lets the application server ensure
consistent availability, naming and resource pooling. This file is located in the
“\web\resources” subfolder.

For the purposes of the IBRD application software, changes are not generally necessary or
expected to be required for this file. Rather, JRun resources (e.g., connection to SQL Server
database) for the IBRD application are configured using the JRun Management Console (see
Section 11 regarding IBRD System Installation).

8.3 Web Application Deployment XML Descriptor

The “web.xml” file is the Web Application deployment descriptor for the application. This
XML file describes the servlets and other components that make up the application, along
with any initialization parameters and container-managed security constraints that the server
is to enforce. The “web.xml” file can is found in “\web\WEB-INF” subfolder and during a
build is stored in the “web-inf” subfolder of the IBRD WAR file.

Specifically, the “web.xml” file identifies all of the servlets and any provides information
needed that by the servlet containers that comprise the web application portion of the IBRD
system. This file is used to register the servlets to the JRun Servlet Container and may

http://www.cospas-sarsat.org/ibrd/
http://www.cospas-sarsat.org/ibrd/

D2NOV05 8-3 C/S D.002 — Issue 1
November 2005

include the servlet name, the servlet class, any parameters the servlet accepts as well as
startup requirements.

This file also contains several other system critical element definitions: session configuration
information for the application to configure how long a session should last (or be timed out if
no activity occurs for that time period); the “welcome” or start up page for the application;
and information about the tag libraries used in the servlets (See Section 8.8 below for more
information about tag libraries).

Example extracts from the “web.xml” file (vertical dots indicate omitted portions):

<?xml version="1.0" encoding="IS0-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">

<web-app>
<display-name>NOAA Framework Test</display-name>

<servlet>
<servlet-name>LoginServlet</servlet-name>
<servlet-class>cs.ibrd. framework.LoginServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>DispatchServlet</servlet-name>
<servlet-class>cs.ibrd.framework.DispatchServlet</servlet-class>
<!-- the following init-param sets the config filename for Log4J -->
<init-param>
<param-name>log4j-init-file</param-name>
<param-value>/WEB-INF/log4j.xml</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet>
<servlet-name>RequestPasswordServlet</servlet-name>
<servlet-class>cs.ibrd.framework.RequestPasswordServlet</servlet-class>
</servlet>

<servlet>
<servlet-name>GetBulkUploadFileServlet</servlet-name>
<servlet-class>cs.ibrd.ui.GetBulkUploadFileServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>LoginServlet</servlet-name>
<url-pattern>/Login</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>GetBulkUploadFileServlet</servlet-name>
<url-pattern>/GetBulkUploadFile</url-pattern>
</servlet-mapping>

<session-config>
<session-timeout>30</session-timeout>

D2NOV05 8-4 C/S D.002 — Issue 1
November 2005

</session-config>

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

<taglib>
<taglib-uri>noaa-form.tld</taglib-uri>
<taglib-location>noaa-form.tld</taglib-location>
</taglib>

</web-app>

The following tags in the “web.xml” file are noted:

e <web-app></web-app> - contains tags about the Web application that registers
and configures servlets and session related parameters

e <servlet></servlet> - contains the tags for the servlet name (<servlet-
name></servlet-name>) and the location of the servlet’s Java class (<servlet-
class></servlet-class>). Servlets may also have initialization parameters (init-
param></init-param>), which can be specified with name/value pairs (<param-
name></param-name> and <param-value></param-value>).

e <servlet-mapping></servlet-mapping> - contains the tags for the servlet name that
was specified above (<servlet-name></servlet-name>) and the URL that will
correspond to the execution of the servlet (<url-pattern></url-pattern>). Usually
the <servlet> and the <servlet-mapping> tags are required for each Java Servlet.

e <session-config></session-config> - contains tags for configurable session
parameters. In the example above, the session timeout for the amount of time to
wait before invalidating a session is specified within the <session-config> tag and
this example shows 30 minutes is used before a timeout occurs (<session-
timeout>30</session-timeout>).

e <welcome-file-list></welcome-file-list> - contains tags for welcome files to use
when no URL is specified. In the example above, the JSP index.jsp is called if no
URL is specified (e.g., <welcome-file>index.jsp</welcome-file>).

e <taglib></taglib> - contains tags that describe tag libraries used which include the
URI (<taglib-uri></taglib-uri>) and the location of the tag library (<taglib-
location></taglib-location>) used by the JSPs

8.4 EJB-JAR XML Descriptor

The “ejb-jar.xml” file is the deployment descriptor for Enterprise Java Beans (EJB). During
a system build, the IBRDEJB.jar archive is created and then included in the IBRD EAR file.
The “ejb-jar.xml” file itself resides in the software development root directory and is stored
within the IBRDEJB.jar archive.

This XML file clearly provides information to JRun and the J2EE environment regarding the
EJBs that are included in the IBRD application. Every EJB must be explicitly included and if
an EJB is ever removed, this file must likewise agree or errors will be generated upon
application start up.

Example extracts from the “ejb-jar.xml” file (vertical dots indicate omitted portions):

<?xml version="1.0" encoding="UTF-8"?>

D2NOV05 8-5 C/S D.002 — Issue 1
November 2005

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
"http://java.sun.com/j2ee/dtds/ejb-jar 1 1.dtd">
<ejb-jar id="ejb-jar ID">
<description>Generated by Export Tool for Enterprise Java Beans 1.1 version 1.0
from IBM VisualAge for Java version 4.0.</description>
<display-name>NOAARGDBSystemGroup</display-name>
<enterprise-beans>
<session id="BeaconManager">
<ejb-name>BeaconManager</ejb-name>
<home>cs.ibrd.complex.ejb.BeaconManagerHome</home>
<remote>cs.ibrd.complex.ejb.BeaconManager</remote>
<ejb-class>cs.ibrd.complex.ejb.BeaconManagerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
<entity id="BeaconRegistration">
<ejb-name>BeaconRegistration</ejb-name>
<home>cs.ibrd.complex.ejb.BeaconRegistrationHome</home>
<remote>cs.ibrd.complex.ejb.BeaconRegistration</remote>
<ejb-class>cs.ibrd.complex.ejb.BeaconRegistrationBean</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>cs.ibrd.complex.ejb.BeaconRegistrationKey</prim-key-class>
<reentrant>False</reentrant>
</entity>

<session id="Reporting">
<ejb-name>Reporting</ejb-name>
<home>cs.ibrd.reporting.ejb.ReportingHome</home>
<remote>cs.ibrd.reporting.ejb.Reporting</remote>
<ejb-class>cs.ibrd.reporting.ejb.ReportingBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
</session>
</enterprise-beans>
<assembly-descriptor id="AssemblyDescriptor ID">
<container-transaction id="MethodTransaction 1">
<method id="MethodElement 1">
<ejb-name>BeaconManager</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

<container-transaction id="MethodTransaction 13">
<method id="MethodElement 13">
<ejb-name>Reporting</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

There is no attempt here to expand on the meaning of the tags in the above “ejb-jar.xml” file.
With regard to IBRD application development, only unnecessary EJBs associated explicitly
with its predecessor (the USA RGDB application), were removed and none were added.
Extensive documentation is available elsewhere (i.e., www.java.sun.com) regarding EJBs and
if necessary, the reader is left to pursue these details accordingly.

8.5 Access Control List XML Descriptor

http://www.java.sun.com/

D2NOV05 8-6 C/S D.002 — Issue 1
November 2005

The “acl.xml” file provides the specific page mappings for the path info portion (See Section
5.2) of URI requests as well as information pertaining to which user role is allowed access to
the page. The “acl.xml” file is found in “\web\WEB-INF” subfolder and during a build it is
accordingly stored in the “web-inf” subfolder of the IBRD WAR file.

The JSPs and the servlets within the IBRD main application make use of a specialized
component, the dispatcher, which provides flow of control and access control. Dynamic
pages in the IBRD system are not accessed directly (static pages may be accessed directly),
but are made through a call to the dispatcher. The module that provides the function of the
dispatcher is “DispatchServlet.java”. The acl.xml file provides DispatchServlet with the
necessary access control information and is loaded into the Servlet Container the first time
the DispatchServlet class is called.

The “acl.xml” file contains an access control list for all servlets and specifies the page name
which is a parameter passed to the DispatchServlet. In turn, this allows DispatchServlet to
determine the JSPs or servlets to run in response to dispatch requests. Each page name
definition contains one or more elements which contain a set of roles and the appropriate
response to execute. This page name attribute is the parameter passed to the DispatchServlet
(e.g., the page name is “UserLogin” in the request syntax
http://host/Dispatch?page=UserLogin). Each access tag (or XML element) specifies an
allowed role or set of roles for the given page. If the role is an asterisk (“*”"), then this access
is allowed for all roles. Access is checked one by one in the order represented in the file. The
first one that applies is used. If no role access applies, access is denied by default (i.e., the
user is presented with the Page Accessed Denied error page).

Example extracts from the “acl.xml” file (vertical dots indicate omitted portions):

<acl>
<page name="UserLogin">
<access role="*" type="allow" script="/Login.jsp"/>
</page>

<!-- This is the page the user will go to after loggin in -->
<page name="Start">
<access role="SHIP SURVEYOR USER" type="allow"
script="/Search?action=display"/>
<access role="SYSTEM MANAGER" type="allow" script="/Search?action=display"/>
<access role="SAR USER" type="allow" script="/Search?action=display"/>
<access role="BLOCK USER" type="allow" script="/BlockHome?action=home"/>
<access role="BEACON OWNER" type="allow" script="/beaconForm?action=view"/>
</page>

<page name="Update">
<access role="BEACON OWNER" type="allow" script="/beaconForm?action=update" />
<access role="BLOCK USER" type="allow" script="/beaconForm=?action=update"/>
<access role="SYSTEM MANAGER" type="allow"
script="/beaconForm?action=update"/>
</page>

<page name="View">
<access role="BEACON OWNER" type="allow" script="/beaconForm?action=view" />

http://host/Dispatch?page=UserLogin

D2NOV05 8-7 C/S D.002 — Issue 1
November 2005

<access role="BLOCK USER" type="allow" script="/beaconForm=?action=view"/>
<access role="SHIP SURVEYOR USER" type="allow"
script="/beaconForm?action=view" />
<access role="SYSTEM MANAGER" type="allow" script="/beaconForm?action=view"/>
<access role="SAR USER" type="allow" script="/beaconForm=?action=view"/>
</page>

<page name="GetBulkUploadFile">
<access role="BLOCK USER" type="allow" script="/GetBulkUploadFile.jsp"/>
<access role="SYSTEM MANAGER" type="allow" script="/GetBulkUploadFile.jsp"/>
</page>

</acl>

The following tags in the “acl.xml” file are noted:

e <page></page> - contains tags and attributes about each JSP or Servlet requested
through the dispatcher. The page tag contains a name attribute which specifies the
name to match for the dispatch request (e.g., <page
name="BeaconForm”></page>) and is the parameter passed to the
DispatchServlet. Each page element contains one or more access elements.

e <access /> - contains access information for the roles of the application to allow or
not allow the ability to execute the page. Each access element sets access for a
role or set of roles. The access tag defines three items for the page: the role that
the access rules applies to (e.g., role="SAR USER”), the type of access for this
rule (e.g., type="allow”), and the JSP or Servlet with any parameters to call to
execute this page (e.g., script="/beaconForm="?action=update”).

8.6 Database XML Descriptor

The “dbReg.xml” file contains database field information pertaining to the main registration
record table (RegistrationDb406). The “dbReg.xml” file is found in “\web\WEB-INF”
subfolder and during a build it is accordingly stored in the “web-inf” subfolder of the IBRD
WAR file.

It is used for critical field based operations in a variety of processing situations, but mostly
with regard to input and output to the database. The class named BeaconTableData is called
to load and reference the actual information. It is important to note that any changes the
schema related to field (or column) specifications in the RegistrationDb406 table must also
be reflected in this table.

Example extracts from the “dbReg.xml” file (vertical dots indicate omitted portions):
<dbReg>

<declaration name="bcnIdl5">
<column name="BcnIdl5" type="char" size="15" nullable="N" />
</declaration>
<declaration name="beaconId">
<column name="BcnIdl5" type="char" size="15" nullable="N" />
</declaration>
<declaration name="beaconCountryCode">
<column name="BeaconCountryCode" type="smallint" size="200-800" nullable="N"
/>
</declaration>

D2NOV05 8-8 C/S D.002 — Issue 1
November 2005

<declaration name="cSTACNumber">

<column name="CSTACNumber" type="varchar" size="10" nullable="Y" />
</declaration>
<declaration name="mMSI">

<column name="MMSI" type="varchar" size="9" nullable="Y" />
</declaration>
<declaration name="password">

<column name="Password" type="varchar" size="16" nullable="N" />
</declaration>
<declaration name="beaconRegType">

<column name="BeaconRegType" type="tinyint" size="0-9" nullable="N" />
</declaration>
<declaration name="beaconType">

<column name="BeaconType" type="varchar" size="32" nullable="N" />
</declaration>
<declaration name="beaconActivationMethod">

<column name="BeaconActivationMethod" type="char" size="4" nullable="Y" />
</declaration>

<declaration name="LastUpdated">

<column name="LastEditDate" type="datetime" size="8" nullable="N" />
</declaration>
<declaration name="LastConfirmationDate">

<column name="ConfirmPrintDate" type="datetime" size="8" nullable="Y" />
</declaration>
<declaration name="BeaconSpecialStatus">

<column name="SpecialStatus" type="varchar" size="16" nullable="Y" />
</declaration>
<declaration name="BeaconRecordStatus">

<column name="RecordStatus" type="char" size="1" nullable="N" />
</declaration>

</dbReg>

The following tags in the “dbReg.xml” file are noted:

e <declaration ></declaration> - contains one attribute for the name of the field,
which is a name to be used internally by other application modules. It can be
noted that multiple declarations and hence internal names may refer to the same
field in the database. Each declaration tag also has one column name tag.

e <column name></> - has four attributes pertaining to the field in the database
must match the parallel information in the database schema for the
RegistrationDb406 table. The attribute “name” is clearly the name of the field,
“type” is the SQL data type, “size” is given as bytes (really only used actively for
text fields) and “nullable” has the two values “Y” and “N” indicating whether or
not the field may be set to NULL.

8.7 Logging XML Descriptor

The “log4j.xml.” file pertains to how logging takes place and where information gets stored.
The “logdj.xml” file is found in “\web\WEB-INF” subfolder and during a build it is
accordingly stored in the “web-inf” subfolder of the IBRD WAR file.

In fact, very little is currently understood about how the IBRD application specifically
performs logging functions. The mechanisms are inherited from the original vendor for the
USA RGDB application and the functionality as well the understanding of how it works is
limited at best. For the sake of basic information, an example of the XML configuration file
is provided below. Perhaps, the more useful information with regard to maintenance in

D2NOV05 8-9 C/S D.002 — Issue 1
November 2005

general can be found in the IBRD System Maintenance Manual where the contents and
purpose of the various log files and tables are discussed.

Example “log4j.xml” file (initial deployment for Acceptance Testing):

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/logdj/"
debug="false">

<appender name="queryAccessLog" class="cs.ibrd.log.QueryAccessLogAppender">
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="=%d{IS08601}[%t] %-5p %c %x -

o
3
oe
=}

/>
</layout>
</appender>
<appender name="printEmailFaxLog" class="cs.ibrd.log.PrintEmailFaxLogAppender">
<layout class="org.apache.logd4j.PatternLayout">
<param name="ConversionPattern"

value="=%d{IS08601}[%t] %$-5p %c %x - Sm%n"
/>
</layout>
</appender>

<appender name="userAccessLog" class="cs.ibrd.log.UserAccessLogAppender">
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="=%d{IS08601}[%t] %$-5p %c %x - %Sm%n"
/>
</layout>
</appender>
<appender name="msgLog" class="cs.ibrd.log.MsgLogAppender">
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="=%d{IS08601}[%t] %-5p %c %x -

o
3
ae
=}

/>
</layout>
</appender>
<appender name="errorfile" class="org.apache.log4j.DailyRollingFileAppender">
<!--param name="File" value="./logs/errors.log"/-->
<param name="File" value="../logs/errors.log"/>
<param name="DatePattern" value="'.'yyyy-MM-dd-a"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="=%d{IS08601}[%t] %-5p %c %x - Sm%n"/>

</layout>
</appender>
<appender name="rollingfile" class="org.apache.log4j.DailyRollingFileAppender">
<!--param name="File" value="./logs/noaa.log"/-->
<param name="File" value="../logs/noaa.log"/>
<param name="DatePattern" value="'.'yyyy-MM-dd-a"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="=%d{IS08601}[%t] %-5p %c %x - Sm%n"/>
</layout>
</appender>
<appender name="console" class="org.apache.log4j.ConsoleAppender">
<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern"
value="=%d{IS08601}[%t] %-5p %c %$x - %m&n"/>
</layout>
</appender>
<category name="UserAccess" additivity="false">
<priority value="info" />
<appender-ref ref="userAccessLog"/>
</category>
<category name="QueryAccess" additivity="false">
<priority value="info" />
<appender-ref ref="queryAccessLog"/>
</category>
<category name="PrintEmailFax" additivity="false">

D2NOV05

C/S D.002 — Issue 1
November 2005

<priority value="info" />
<appender-ref ref="printEmailFaxLog"/>
</category>

<category name="cs.ibrd.exception.DAOException" additivity="false">

<priority value="warn" />
<appender-ref ref="errorfile"/>
</category>
<category name="cs.ibrd.exception" additivity="false">
<priority value="warn" />
<appender-ref ref="errorfile"/>
<appender-ref ref="msgLog"/>
</category>
<category name="cs.ibrd.framework" additivity="false">
<priority value="warn"/>
<appender-ref ref="errorfile"/>
<appender-ref ref="msgLog"/>
</category>
<category name="cs.ibrd.ui" additivity="false">
<priority value="warn"/>
<appender-ref ref="errorfile"/>
<appender-ref ref="msgLog"/>
</category>
<category name="cs.ibrd.taglib.form" additivity="false">
<priority value="warn"/>
<appender-ref ref="errorfile"/>
<appender-ref ref="msgLog"/>
</category>
<root>
<priority value="warn"/>
<appender-ref ref="console"/>
<appender-ref ref="rollingfile"/>
<appender-ref ref="errorfile"/>
<appender-ref ref="msgLog"/>
</root>

</log4j:configuration>

8.8 Custom Tag Library Descriptors

Custom tags are software elements used in JSP modules to provide functionality in an
“HTML tag like” syntax that goes beyond standard HTML capabilities and/or performs
application specific processing. The underlying Java code that implements these custom tags
can be found in the software development folder “cs\ibrd\taglib\form”. The custom tag
library descriptors discussed here provide the interface specifications between the usages of
the tags in JSP and the underlying code.

There are two text files which are custom tag library descriptors with the names, “noaa-
form.tld” and “noaa-framework.tld”. Actually, both of these files are XML files, but in these
specific cases the extension “tld” is used.

Example “noaa-framework.tld” file (initial deployment for Acceptance Testing):

<?xml version="1.0" encoding="UTF-8"7?>
CTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd">

<!DO

<!--

//%File Name: noaa-framework.tld

/1%

//%Description: This file is a custom tag library definition

/1%
/7%

supports many JSP pages.

//%Revisions:

/1%
/1%
/7%
/7%

02/05/04 LGL: Added this documentation block.
02/05/04 LGL errors tag: Added optional attribute "language"

(tld)

that

08/19/04 LGL errors tag: Added optional attribute "showExtraExpl"

D2NOV05 8-11 C/S D.002 — Issue 1
November 2005

<taglib>
<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>NOAAFramework</shortname>
<tag>
<name>errors</name>
<tagclass>cs.ibrd.framework.ErrorList</tagclass>
<bodycontent>emty</bodycontent>
<attribute>
<name>language</name>
<rtexprvalue>true</rtexprvalue>
</attribute>
<attribute>
<name>showExtraExpl</name>
<rtexprvalue>true</rtexprvalue>
</attribute>
</tag>
</taglib>

Example extracts from the “noaa-form.tld” file (vertical dots indicate omitted portions):
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary 1 1.dtd">

<taglib>

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>form</shortname>
<uri>http://cs.ibrd.ui/tags-form-1.0.0</uri>

<!-- Text Field Tag -->
<tag>
<name>textField</name>
<tagclass>cs.ibrd.taglib.form.TextFieldTag</tagclass>
<bodycontent>empty</bodycontent>
<attribute>
<name>readOnly</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>
</attribute>

<attribute>
<name>maxLength</name>
<required>false</required>
</attribute>
</tag>

<!-- Radio button list. -->
<tag>
<name>radioList</name>
<tagclass>cs.ibrd.taglib.form.RadioListTag</tagclass>
<bodycontent>empty</bodycontent>
<attribute>
<name>name</name>
<required>true</required>
</attribute>
<attribute>
<name>mapping</name>
<required>false</required>

D2NOV05 8-12 C/S D.002 — Issue 1
November 2005

</attribute>

<attribute>
<name>choiceFont</name>
<required>true</required>

</attribute>

<attribute>
<name>language</name>
<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>
<name>fullList</name>
<required>false</required>

</attribute>

</tag>

</taglib>

The following tags in both custom tag library descriptor files are noted:

e <tag></tag> - contains the specific elements of tags that define the custom tag
itself.

e <name></name > - is the name of the tag (i.e., for JSP usage).

e <tagclass></ tagclass > - contains the name of the Java class, complete with
package specification, that supports this custom tag.

e <bodycontent></ bodycontent > - indicates what type of content is to be found in
the body of the tag when it is used, if any.

e <attribute></ attribute > - contains a name and various settings for each attribute
to associated with this custom tag.

The following two lines of JSP code have been extract from the BeaconStatus.jsp file to
provide an example of the usage of a custom tag:

<%@ taglib uri="/WEB-INF/noaa-form.tld" prefix="noaaForm" %>

<noaaForm:radioList name="specialStatus" choiceFont="DataFONT" language="<%=language%>" />

In the above extract from the “noaaform.tld” tag library descriptor, the specification for the
radioL.ist custom tag is given. The following relationships can be observed. In the example
the prefix “noaaForm” is defined and linked to the custom tag library descriptor file by the
<%(@ taglib ... %> specification. The usage <noaaForm:radioList ... /> provides the name
and values for the three “required” attributes. The parallel tag definitions may be easily
identified in the <tag> specification. The und“cs.ibrd.taglib.form” folder processes the
attribute values accordingly.erlying code, “RadioListTag.java” in the

8.9 Multi-Lingual Functionality
8.9.1 Overview and Basic Mechanisms

As previously mentioned the IBRD application is an adaptation of a very similar
software package, the USA RGDB. Perhaps the single most significant
difference or enhancement lies in the requirement for the IBRD to provide the
user interface in multiple languages. The key to a good design for
Internationalization (in Java documentation often abbreviated “118n”) lies in the

D2NOV05

8-13 C/S D.002 — Issue 1
November 2005

careful separation between what goes on the screen and how it gets there.
Ideally, the “how content is displayed” should stay the same while only the
content itself dynamically changes with each language. However, the original
RGDB application was not designed with Internationalization in mind. On
screen information was scattered everywhere appearing at many levels of Java
code, HTML files and most extensively within the JSP modules. Since a complete
software re-design was not an option, the resulting implementation uses an
effective but somewhat “brute force” approach to accomplish the required
Internationalization.

Java has some open source classes that offer capabilities and features to support
Internationalization, specifically Locale and ResourceBundle. Locale handles a
number of settings such as number formats and date/time formats.
ResourceBundle uses its “getBundle” method to load content from Properties
files (*.properties) for different languages (details are provided in the next
section). In the IBRD application the Locale class is left at its default settings
which are United States and English. There are perhaps other subtle potential
hazards in setting the Locale, but one known problem lies in the fact that the
software occasionally parses a date for validity and/or to extract information.
Simply put, allowing the Locale to change causes the date format to likewise
change and creates problems. As a related point, it is noted that one aspect of
Locale typically lies in determining which Properties file the ResourceBundle
will load when the “getBundle” method is called. Specially, actively setting the
Locale causes “getbundle” to look for file names keyed to each language (e.g.,
French contains “ fr”’). In the IBRD application this mechanism is not used, and
the filename to be loaded is provided explicitly with no “assumed keys” expected
or provided.

The following bullets summarize the various software elements and components
that have been addressed in the Internationalization effort for the IBRD:

An opening page is provided to select the language for Data Providers (Beacon
Owners and National Data Providers). This results in a language option (text
string set to “English”, “French” etc.) being stored in the Session at the HTTP
Request level.

All pages that originate from the account login page (SAR Users, Ship
Surveyors and Database Administrators) are provided in English only. Some
pages simply only have English versions and where pages are the same as those
used by multi-lingual users (e.g., beacon view/update form), the language for
the Session is set to English by default.

All labeling and general text that appears on the user screen originating from
code in JSP files that needs to be multi-lingual reaches the screen by using
embedded Java code that passes a “key” (text string) to backend code that in
turn returns the required text in the current language for the Session.

Likewise all multi-lingual labels and general text that appears on the user screen
originating from code already in backend Java files is retrieved using a “key”
(text string) to obtain the required text in the current language for the Session.

D2NOV05

8-14 C/S D.002 — Issue 1
November 2005

The translated versions for Image files (predominately buttons) are stored in
subfolders under “web\images” with the same name as the text string for the
given language as stored in the Session (e.g., “English”, “French” etc.). The
appropriate image is displayed accordingly by using the Session variable to
form the appropriate folder name from which to retrieve the image.

Java Scripts that provide the set of “available links” at the bottom of every
screen are handled similar to image files with language subfolders under the
“web\js” folder.

HTML files in the various languages, predominately “online help files” but
others are included, are retrieved from subfolders under the “web\help” folder.
These files are discussed further in a subsection just below.

Letters to be sent via email to end users also are provided in multiple languages
and are sent per the current setting for language in the Session. Letters are
discussed in more detail below under Section 8.11.

8.9.2 Properties Files for On Screen Text

There are two sets of Properties files that provide the vast majority of the multi-
lingual content for the IBRD application. One set of contains error messages
(ErrorMessages_xxx.properties) and the other provides for various “on screen”
text as well as the labels for many data entry fields (FormLabels_xxx.properties).
In each set there is one file for each language supported by the IBRD and the
“xxx” in the file name is replaced by the language. For the initial delivery each
set consists of four files (English, French, Russian and Spanish).

As mentioned above in the introduction to Section 8, Properties files are text files
with individual lines containing a <name/key>=<value> format. The software
reads in the key and the associated value which is all the text to the right of the
equals sign up to but not including the line feed and carriage return sequence.
The data is placed in a Java structure or class called a ResourceBundle which
essentially uses “hashmap” or “hashtable” (a set of keys and values) for storage.

It is important to note that for each file in the same set, the keys must all match
exactly, or more to the point, all keys coded within and hence expected to be
found by the software must be in the file or an error will occur. The order does
not matter, but the keys must all be there, with exactly the same spelling, which is
case sensitive. Clearly, each file will have different values to the right of the
equal signs that accordingly supports each language. In order to facilitate
tractability of the contents for these files, it is highly recommended that the order
of the keys be kept the same for each language file. Example extracts from the
various “FormLabel” Properties files follow.

Example extract from “FormLabels English.properties” (vertical dots indicate
omitted portions):

Buttons

Done = Done
Accept = Accept
Login = Login
Cancel = Cancel

D2NOV05 8-15 C/S D.002 — Issue 1
November 2005

General Phases

ClickHere = Click Here

NeedHelp = Need help with this page?

TimeoutReminder = Please note that this page expires within 30 minutes.

SUCCESS_UPDATE_MSG = The update process has been completed successfully.

WARNING UPDATE MSG = The update process has been completed. However, some of
the information you supplied may be inconsistent with the expected value for that
field. You should review the information and correct any inconsistencies in the
fields identified with ATTENTION Messages. Please either resubmit new information
using the 'Update Again' button or click the 'Accept With No Changes' button at
the bottom of the page.

Beacon Info DropDowns

121.5 MHz = 121.5 MHz

SART = SART

CAT1 = Category 1 (Automatic or manual)

ContactUsTextLine2 = Please note that all correspondences can only be serviced
when submitted in English.

Example extract from “FormLabels French.properties” (vertical dots indicate
omitted portions):

Buttons

Done = Fini
Accept = Accepter
Login = Connecter
Cancel = Annuler

General Phases

ClickHere = Cliquer Ici

NeedHelp = Avoir besoin d'aide avec cette page?

TimeoutReminder = Veuillez noter que cette page disparaitra dans un délai de 30
minutes.

SUCCESS_UPDATE _MSG = Le processus de mise a jour a été complété avec succes.
WARNING UPDATE MSG = Le processus de mise a jour a été complété. Cependant, une
partie des informations que vous avez fournie peut étre en contradiction avec les
valeurs supposées dans certain champs. Veuillez vérifier vos données et corriger
toutes les valeurs contradictoires dans les champs identifiés par des messages
d'AVERTISSEMENT. Veuillez soumettre a nouveau les nouvelles données en cligquant
sur le bouton de 'nouvelle mise a jour' ou en cliquant sur le bouton 'accepter
sans changements' en bas de la page.

D2NOV05 8-16 C/S D.002 — Issue 1

November 2005
Beacon Info DropDowns
121.5 MHz = 121.5 MHz
SART = SART
CAT1 = Catégorie 1 (automatique ou manuel)
ContactUsTextLine2 = Veuillez noter gque toutes les correspondances doivent étre

soumises en anglais pour étre prises en consideration.

Example extract from “FormLabels Spanish.properties” (vertical dots indicate
omitted portions):

Buttons

Done = Terminado
Accept = Acepto
Login = Entrar
Cancel = Cancelar

General Phases

ClickHere = Haga Click Aqui

NeedHelp = Necesita ayuda con esta pagina?

TimeoutReminder = Por favor note que su pagina expirard dentro de 30 minutos.

SUCCESS_UPDATE MSG = El proceso de actualizar ha terminado con exito.

WARNING UPDATE MSG = El proceso de actualizar esta completo. Pero alguna
informacidén que proporcioné no consiste con lo esperado. Deberia revisar la
informacién y correjir los campos identificados con el mensaje de ATENCION.
Someta nueva informacidén usando el botdén 'Actualizar de Nuevo' o haga clic al
botdén 'Aceptar Sin Cambios' al inferior de esta péagina.

Beacon Info DropDowns

121.5 MHz = 121.5 MHz

SART = SART

CAT1 = Category 1 (Automatico o manual)

ContactUsTextLine2 = Por favor note que toda correspondencia puede ser contestada
solo si la somete en Inglés.

Example extract from “FormLabels Russian.properties” (vertical dots indicate
omitted portions):

Buttons

Done = За в е р ш и т s#x044c;
Accept =

С #x043e; г л а ш а ю с ь
Login = Во й т и

Cancel = Ale; т 6#x043¢c; е н и т ь .

D2NOV05

8-17 C/S D.002 — Issue 1
November 2005

General Phases

ClickHere = Н а ж м и т е

з д е с ь

NeedHelp = Н у ж н а

п 6#x043e; м о щ s#x044c; c

э т &«#x043e; й

с т р а н и ц ы ?
TimeoutReminder =

П 6#x043e; ж а л у й с т а
п р и м и т ¢#x0435; в C¢e;
в н и м а н и е,

ч т s#x043e; в а ш а

с 6#x0435; с с 6#x0438; D¢f;

з 6#x0430; к о 6#x043d; ч и 6#x0442; s#x0441; D¢f;
ч е р е з 30

м и н у т .

SUCCESS_UPDATE_MSG = Ilpouecc OOHOBJIeHMA OBUI 3aKOHUEH YCIENHO.

WARNING UPDATE_MSG = IMlpouecc OOCHOBJIeHMA OBUJI 3aKOHUEH C MNpenynpexieHuem (amu) . Bel
MOXEeTe BHECTM MCHPAaBJIEHMA M HOBTOPHO OTOCJATh HAHHEE C HOMOWBK KHONKM OOHOBMTE. BH
MOXeTe MNPOUTHOPMPOBATH MNpenylpexIeHMs M 3aKOHUMTH IPOLleCcC, BOCIOJIE30BAaBIMCH
KHONKOM OTMEHMUTH .

Beacon Info DropDowns

121.5 MHz = 121.5 MHz

SART = SART

CAT1 = 1 Ala;а6#x0442; ¢#x0435; г 6#x043e; р и я
(А в т о м а т и ч е &
#x0441; s#x043a; и й и л и

Р у ч н о й)

ContactUsTextLine2 =

П о ж а л у й с т а
о т s#x043c; е т s#x044c; т е :

В 6#x0441; s#x044¢f;

к #x043e; р р 6#x0435; с п #x043e; н д &#
x0435; н ц и я

д о л ж н а

п 6#x0440; s#x043e; х 6#x043e; д и т s#x044c;
н а

а н г л и й с к о м
я з ы к е .

The above examples highlight several important characteristics that should be
observed with regard to these files and somewhat with regard to Properties files
in general. Comment lines (ignored when the ResourceBundle is loaded) begin
with a pound sign (e.g., “# Buttons”). Keys (to the left of the equal sign) can not
contain spaces. Everything to the right of the equals sign is the value, no matter
how long. In this document layout, carriage return and line feed sequences
appear to occur in the middle of these long value entries, but in the “raw text”
originals only one such sequence occurs at the very end.

Furthermore, it can be noted that in the French and Spanish files that special
characters or English characters with accents appear. These letters are part of the
standard ASCII font sets and as such are displayed here, as well as on web pages

D2NOV05

8-18 C/S D.002 — Issue 1
November 2005

reliably and consistently. However, Russian uses Cyrillic fonts which behave
with significant differences. Should an end user be working on a computer fully
configured to display and operate in Cyrillic, things may work differently than
described the following paragraphs. However, for this development effort there
were limited resources as well as the understanding as to how to mimic such
computers. More important there is a general expectation that not all users of the
Russian interface will have such a computer, in particular in each case with
similar settings etc. Put another way, it was determined that a more general
approach was needed that would work on any computer running any standard
browser with any language providing the native or underlying format.

A brief examination of the “FormLabels Russian.properties”, will quickly
suggest that something different is going on here. Most of the multi-lingual text
that appears in the IBRD user interface is generated by HTML or JSP modules.
The exceptions are the occasional use of browser based pop-up dialog boxes.
When the Russian text to be displayed is being generated by HTML or JSP code,
using the pure Unicode hexadecimal values is the surest way of getting the
desired output. Specifically, Unicode uses four bytes to reference an offset into a
given font (ASCII uses only two). The “character images” in the higher
references are possible only when a four byte value for an offset is used. This is
where Cyrillic and many other non English / European / Latin characters are
found. In HTML, and hence likewise in JSP, the format for an absolute character
reference takes the form “&#HHHH;” where HHHH is a hexadecimal value (e.g.,
“043A”) and the other characters (“&#” and “;”) are leading and trailing
delimiters. These sequences are clearly shown in the example above.

More details on the required conversion process from Cyrillic text to HTML
Unicode are discussed below in Section 8.9.3. First it is noted that there are some
portions in the above example where the actual Cyrillic text is found instead of
Unicode. As mentioned above, there are several situations where the software
makes use of the browser based pop-up dialog boxes. In these cases the text is
handled directly by the browser (and/or operating system settings) and Unicode
can not be passed directly. At least when Unicode in the format “\uHHHH” is
passed to the browser dialog box, the upper bytes that are the key the to the
Unicode capability are apparently ignored. In fact for Cyrillic the raw text does
not work either, or at least it does not work in a non-Cyrillic computer
environment. It has been assumed that if the computer and/or browser are setup
to properly handle Cyrillic fonts that the text will be displayed correctly. This is
still a theory that has yet to be tested. No perfect solution has yet been found to
handle this dichotomy.

There is a similar dichotomy to be noted within the
“FormLabels_French.properties” file. A close inspection of this file will reveal
that Unicode specifications appear in some places here as well. (See the line
“NeedHelp = Avoir besoin d'aide avec cette page?”’). There is a
different reason for this that falls more into the category of a “special case”.
Many of the translated labels are “passed” back to JSP code as the text content for
the value of an attribute within the HTML tag syntax. For example, the following
code sequence appears in many JSP files:

D2NOV05

8-19 C/S D.002 — Issue 1
November 2005

<table width=80% summary="table contains help link">

<TR align=right>

<TD>

<A href="<%=helpFileName%>" title="<%=formBean.getLabel (language, "NeedHelp") %>">
<%$=formBean.getLabel (language, "NeedHelp") $>

</TD></TR>

</table>

In this example value for the “title” attribute is what would cause a problem if the
Unicode “'” is not used. Specifically, in French the actual phrase
appears as: “Avoir besoin d’aide avec cette page?” Note that the Unicode
sequence “'” represents a single quote character, which is commonly
used for contractions in French phrases. However, since the HTML translates a
single quote or a double quote in the same fashion, the single quote if left there in
the middle of the phrase, would appear to close the content of the value for this
attribute and the rest of the phrase becomes a dangling block of text that the
browser (or HTML parser) attempts to handle as the next attribute. A browser
error will occur and the desired text will of course not display properly. The
solution is to use the Unicode in place of single (or double) quotes for such cases.
Inversely, just like our Cyrillic case, this Unicode substitution will not work for
elements that are to be displayed in a browser dialog box (e.g., the key
“SUCCESS UPDATE MSG”) and in the cases leaving the single quote intact
works best). It should perhaps be noted that this special substitution of Unicode
characters is also applied in the French Java Script files (*.js in “web\js\french\”).

8.9.3 Conversion of Cyrillic Text to Unicode

As noted above, the majority of Cyrillic text on the IBRD screen is produced by
explicit Unicode expressions. Thus, given a set of Cyrillic text represented in the
normal readable fonts (i.e., for those who understand Russian) the goal is to
convert this text to a valid Unicode sequence used for the IBRD HTML output. It
should perhaps be noted that other methods of handling Cyrillic (or other fonts
that involve Unicode) certainly exist, and the methods used here simply represent
one solution, and not necessarily the best one.

The method used here involves a two step process as given just below. The first
step assumes that the Cyrillic text is being provided to the conversion utility in a
plain Unicode text file. This means that if the original text is in Microsoft Word
or some other editor format, it must be first saved as plain Unicode text (i.e., as
used by Microsoft Notepad). Another important assumption is that the Sun Java
SDK utilities have been downloaded and installed (See Section 10.2). The two
steps involved are:

(1) Use the Java utility named native2ascii.exe found in the SDK subfolder
“bin” to convert the Unicode font information into a form of raw Unicode
references. For example a command line sequence might appear

something like: native2ascii -encoding Unicode
Russian.u.txt Russian.a.txt
(2) The syntax created in step one looks like

“Nu0417\u0430\u0432\u0435\”, but we need it to appear as

D2NOV05 8-20 C/S D.002 — Issue 1
November 2005

“З а в е”. Each sequence needs
to have the slash replaced with ampersand and pound signs, and a semi-
colon needs to be added to the end.

The attentive reader is likely to now ask: Why is step (2) needed, as the Java
utility is provided by experts in the field and produces something so similar. The
answer is: I don’t know why, but the second sequence works with the IBRD and
the first doesn’t. This attentive reader may also note, after thinking about it at
least, that while doing a global find and replace will take care of the slashes
needing to be changed to ampersands and pound signs, adding a semi-colon is not
quite as easy to handle. One way to do it is to include all three characters (i.e.,
add the semi-colon) in the find and replace operation, but then you need to go
back and remove the unnecessary semi-colon at the beginning of each line and
add a final one at the end. The solution applied for the IBRD development was a
very simple custom program that directly performs Step (2).

8.9.4 HTML Files and Other Support

In the IBRD application, HTML files are used in situations where only static text
is required. This is essentially limited to on line help and one or two other
elements such as the “Privacy Policy” page. The filenames for “Help” files take
the form “xxx_help.htm” where “xxx” is often similar to or the same as the
corresponding JSP module.

One important aspect of all HTML files lies in the fact that the translations and in
general even the modifications for the “original” English versions have been
accomplished using Microsoft Word as the editor (i.e., in HTML mode — files
loaded and saved as *.htm). As such, it should be noted that Word often seems to
add excess code and comments, as well as occasionally butchering the hyperlinks
to images in these files. Clearly, this can make the files a bit cumbersome to
work with at the raw HTML level as well as occasionally resulting in some repair
to hyperlinks after updates. Regardless, there is a measurable advantage in using
Word as the language specific subtleties are dealt with directly by Word,
including all the difficulties involved with Cyrillic fonts.

As mentioned above in the summary, HTML files (*.htm), Java Script files (*.js)
and image files (*.gif, *,jpg, and *.bmp) are all handled similarly with respect to
the use of separate subfolders for each language. When a JSP module needs to
provide one of these elements to the end users, the text string for the currently
active language is pulled from the HTTP Session hashmap, and used to build a
path and filename for the appropriate reference. For example the following
embedded Java code appears in the JSP module, “BO _login.jsp” (Beacon Owner

Login Page).

<%
// 01/30/04 LGL Support the language choice
String language = (String)

request.getSession () .getAttribute (RGDBConstants.SESSION ACTIVE LANGUAGE) ;
String helpFileName = "./help/" + language + "/BO_login help.htm";
String loginImageName = "./images/" + language + "/login.gif";
String cancelImageName = "./images/" + language + "/cancel.gif";

String footerFileName = "./js/" + language + "/welcome footer.js";

D2NOV05

8-21 C/S D.002 — Issue 1
November 2005

%>

Clearly, a local variable named “language” is assigned and used to form
filenames (which in clued paths) accordingly. The following code examples from
further down in the same JSP module demonstrate the simple usage for these

references.

<A href="<%=helpFileName%>" title="<%$=formBean.getLabel (language, "NeedHelp")
$>"><%=formBean.getLabel (language, "NeedHelp") %>

<img border="0"
src="<%=loginImageName%>" alt="<%=formBean.getLabel (language, "Login") %>
<$=formBean.getLabel (language, "Button") %>" width=90 height=20
TABINDEX=3>

<IMG border="0" src="<%=cancelImageName%>"
alt="<%$=formBean.getLabel (language, "Cancel") %> <%=formBean.getLabel (language,
"Button") %>" width=90 height=20 TABINDEX=4>

<SCRIPT LANGUAGE="JavaScript" src="<%=footerFileName%>">

8.10 Document Manager Properties File

The DocumentManager.properties file, resides singularly in the IBRD JRun Server folder
(e.g., “C:\JRund\servers\IBRD”), and maintains information on email, in particular the
templates for formatting letters sent to users. This is the only XML and/or Properties file that
is not “compiled” into the archive file (IBRD.EAR) that comprises the deployable IBRD

application software.

D2NOV05 8-22 C/S D.002 — Issue 1
November 2005

Example “DocumentManager.properties" file (initial deployment for Acceptance Testing):

FHEHHF AR R R R R R R
FHEHHFH AR R R R R A R R R R R R R R R R R

##

NOTE: ANT scripts replace the KEYWORDs such as the root directory. Do not
change the KEYWORD name.

##

igddssasisdssasissssasiidissatidssassisdsaaiiissaaisdssaaiiiisastiissastiissasisdi
igddssasisssasisisaasiiisaasiisagsisisaasiissaasiissansiisantiissaniissanisdi

PrintDebug.printMessagesFlag=true
PrintDebug.logFileName=c:/jrund/servers/IBRD/dispatch/temp/printDebuglLog.txt
RuntimeExecProcessor.consumeBuffers=false

B
#

DocumentManager Properties

#
B

This boolean flag determines if the temporary files should
be removed after they are dispatched. A setting of "false"
leaves the file in the below directory
DocumentManager.removeDocumentsAfterUse=false

This directory hosts the temporary files.

IMPORTANT: THIS SHOULD HAVE ALL DOUBLE REVERSE SLASHES

Example: c:\\Jrun4\\servers\\default\\IBRD-ear\\dispatch\\temp
DocumentManager .documentDirectory=c:\\jrund\\servers\\IBRD\\dispatch\\temp

DO NOT change this property value
DocumentManager.simulatedNormalMode=false

R
#

EmailDispatcher Properties

#
R R R 4

A common name to easily identify the email server (used only for logging)
EmailDispatcher.commonName=IBRDEmailServerl

SMTP Host server name (network id)
EmailDispatcher.smtpHost=nes3.nesdis.noaa.gov

Email address to be used as "from" address for all the emails
EmailDispatcher.fromAddress=IBRD@noaa.gov

Flag to use the real email address on Beacon Account or the testaddress (see below)
as "to" address. testaddress is effective only when the flag is set to false
EmailDispatcher.sendToRealUser=true

EmailDispatcher.testAddress=IBRD@noaa.gov

ifddssasissssasisisaasiiisaasiiisagsisisansiissaasiissansiisantiissaniiinanisdi

#

DocumentAuthor Properties

#

Properties point to other files containing content for letters
#

ifddssassssssasisisaanisisagaiiisassisisaasiissaaaiissaniiisaniiissaniisntnisdi

Request for Confirmation Letter templates
DocumentAuthor.ConfRegEmailFileEnglish=c:/jrund/servers/IBRD/dispatch/templates/confir
mation request email English.txt
DocumentAuthor.ConfRegEmailFileFrench=c:/jrun4/servers/IBRD/dispatch/templates/confirm
ation request email French.txt
DocumentAuthor.ConfRegEmailFileRussian=c:/jrund/servers/IBRD/dispatch/templates/confir
mation request email Russian.txt
DocumentAuthor.ConfRegEmailFileSpanish=c:/jrund/servers/IBRD/dispatch/templates/confir
mation request email Spanish.txt

Registration "Information Provided" Letter templates

D2NOV05 8-23 C/S D.002 — Issue 1
November 2005

DocumentAuthor.RegEmailFileEnglish=c:/jrun4/servers/IBRD/dispatch/templates/registrati
on _email English.txt
DocumentAuthor.RegEmailFileFrench=c:/jrund/servers/IBRD/dispatch/templates/registratio
n_email French.txt
DocumentAuthor.RegEmailFileRussian=c:/jrun4/servers/IBRD/dispatch/templates/registrati
on_email Russian.txt
DocumentAuthor.RegEmailFileSpanish=c:/jrund4/servers/IBRD/dispatch/templates/registrati
on_email Spanish.txt

8.11 Letters and Templates

There are two letters automatically generated by the IBRD application, one sent after a record
is added or modified and the other to request users to confirm data that has not been updated
in two years. Similar discussion and examples are provided in the IBRD System
Maintenance Manual with the emphasis here on the underlying software aspects.

The email “text body” files are simple text files that contain the content of the letters to be
sent to end users. Only users who provide a valid email address can be sent messages. There
are actually four files for each letter format, one for each of the languages supported by the
IBRD: English, French, Russian and Spanish. The files names and locations are stored in the
DocumentManager.properties file. It should be noted that the salutation line (i.e.., Dear
<beacon owner>), as well as the URL (found in SystemCfg) are added by the software, at the
beginning and ending respectively, when the email is generated. Finally, each email includes
a segment in the body of the email consisting of a simple field by field text listing of the
registration information currently on record in the database.

This all takes place in the Java class modules named “DocumentAuthor.java”,
“DocumentManagerBean.java” and “DocumentAuthorTextOnly.java”. Specifically, when an
email needs to be generated, “ProcessRequest” under the dispatcher within
“DocumentManagerBean” build and sends the necessary email. Based on the settings in
“DocumentManager.properties”, the individual various pieces are pulled from within
“DocumentAuthor”, with the specific contents being in part managed by
“DocumentAuthorTextOnly”.

Once a given email has been constructed by these modules, “DocumentManagerBean” passes
it to the resident or local email Server (identified in “DocumentManager.properties™) via a
call to the method named “sendMail” from the “EmailDispatcher” Class. Ultimately, the call
to “Transport.send(msg)” in “sendMail” invokes the native Java capabilities from the
“javax.mail” Class to send the email.

8.12 Request for Confirmation Process

This software component determines the Beacons for which a Request for Confirmation
Letter is needed and transmits them accordingly to Beacon Owners. It is implemented as a
Java program and runs as a background process that is invoked by the Windows 2000
operating system task scheduler (usually every 24 hours).

The underlying goal is to determine whether or not a request for confirmation needs to be
generated in association with a given registration record. Records in the applicable “date
range” as are determined as follows:

D2NOV05 8-24 C/S D.002 — Issue 1
November 2005

1. Add two years to the ConfirmationPrintDate and include records when the difference
between today and this computed date is less than or equal to the number of days in
the SystemCfg table (field “CONFIRMATION REQUEST TIME”). It is useful to
note that “really old” dates will result in negative values and hence be included.

2. Given that the above “date range” criteria is met for a given record the following
configuration and status conditions must also be met:

a. Corresponding ComfirmationRequired from MidInfoCfg (record where mid
matches the beacon country code) is “Yes”.

b. ConfirmationStatus field is not NULL, “SENT” or “UDEL”

c. SpecialStatus is NULL (i.e., Normal status)

d. Record must have an “valid” email address field (not NULL or empty)

The actual query used within the software at time of installation reads as follows:

select benld15, OwnerName, a.BeaconRegType, BeaconRegName, EmailAddress

from RegistrationDB406 a, MidInfoCfg b, BeaconRegTypeCfg ¢

where a.BeaconRegType = c.BeaconRegType

and a.BeaconCountryCode = b.mid

and b.ConfirmationRequired = 'Y’

and (ConfirmationStatus IS NULL or ConfirmationStatus not in ('SENT', 'UDEL"))

and a.SpecialStatus IS NULL

and datediff(DAY, GETDATE(), dateadd(YEAR, 2, ConfirmPrintDate)) <=

(select SystemCfgValue from SystemCfg where SystemCfgName ='CONFIRMATION REQUEST TIME")
order by benid15

If desired, the above query could be manually run at anytime from “SQL Query Analyzer” to
determine which records should be picked up in the next run. It is useful to note that the
IBRD implementation does not include records where ConfirmationStatus is NULL, as was
the case with the original RGDB code upon which the RGDB is based. In fact all new
records are assigned a default status of “CHGE” and hence a ConfirmationStatus of NULL
should not really occur.

Furthermore, no matter when an update is made to a record (other than by this “request
generation” process itself) the IBRD always sets the ConfirmationStatus to “CHGE” as well
as setting the ConfirmPrintDate to the current date and time. The status of “CFRM” is
reserved exclusively for when a user explicitly performs an online acknowledgement. As
such, the whole business of generating “requests for confirmation” really hinges almost
exclusively on the ConfirmPrintDate.

Finally, it is perhaps useful to note that there is no attempt here to maintain a two-year
renewal cycle that expires on any given day of the year like other types of registrations (e.g.,
car, vessel etc.) are often implemented. A “request for confirmation” is only generated when
a user has not made any update for a period of two years (minus the specified period in
SystemCfg to be precise) and any update at all will start the two year cycle over beginning at
the new date.

8.13 FileArcPurge Process

A special purpose application is used to purge files created by the IBRD software. This
application, named IBRDFileArcPurge.exe, runs as a scheduled task and uses a configuration

D2NOV05 8-25 C/S D.002 — Issue 1
November 2005

table in the IBRD database which indicates the folders to be checked and the ‘“age out”
criteria of files to be purged.

The program is written in Visual Basic (Version 6.0), and is really a very simple set of code
that employs Microsoft supplied mechanisms (class named FileSystemObject) to perform the
necessary file management actions. The folders (or file paths) and the number of days to
retain a given type of file are all configured using the table named “DbmnFileArcPurgeCfg”.
This table and some example settings are provided in the IBRD System Maintenance Manual.

8.14 ArcPurgeTables Process

The table archive application (IBRDArcPurgeTables.exe) takes care of archiving data from
various tables in the IBRD database. This program moved “aged out” records to similar
tables found in a second database which is the IBRDArchive database. The number of days
that records are kept in each table is configured by setting appropriate values in the
SystemCfg table. The SystemCfg table and various example settings are provided in the
IBRD System Maintenance Manual.

The central program is written in Visual Basic (Version 6.0). The code here simply gets
values from SystemCfg and calls a set of SQL Stored Procedures which actually do the bulk
of the work. As the following table indicates, there are eight tables identified for archival and
hence eight associated Stored Procedures. Clearly there are and eight corresponding entries
in the SystemCfg table and in the table below default values are given that will be applied
should no entry be found in SystemCfg.

Table Name Stored Procedure Name “Days To Keep”
Default Value
OperMsglLog ArcPurgelBRDOperMsglLog 180
LogUserAccess ArcPurgelBRDLogUserAccess 180
LogQueryAccess ArcPurgelBRDLogQueryAccess 180
LogPrtEmailFax ArcPurgelBRDLogPrtEmailFax 180
SarTransactionLog ArcPurgelBRDSARTransactionLog 180
ConfigChangelog ArcPurgelBRDConfigChangelLog 90
Feedback ArcPurgelBRDFeedback 365
RegistrationDb406 ArcPurgelBRDRegistrationDb406 3650

An example Stored Procedure is listed as follows. Clearly the logic is fairly simple and each
one is quite similar. Nonetheless, a different one is needed for each table as different field
names are accordingly referenced, perhaps most noteworthy the specific date/time field used
for “age out” comparisons.

CREATE PROCEDURE ArcPurgeIBRDConfigChangeLog
@daysago int=180
AS
declare @go datetime,@max int,@i int,Q@id int, @t datetime
set deadlock priority low
set nocount on
begin tran
set identity insert IBRDArchive.dbo.ConfigChangeLog on
select @go=getdate(),@max=40,0@i=0,@id=null,@t=min (ChangeTime) from IBRD.dbo.ConfigChangelLog
select @id=min (ChangeId) from IBRD.dbo.ConfigChangelLog where ChangeTime=Q@t
while @id is not null and @t is not null and @t<dateadd(day,-@daysago,@go) and
getdate () <dateadd (second, @max, @go)
begin

C/S D.002 — Issue 1
November 2005

D2NOV05 8-26

insert IBRDArchive.dbo.ConfigChangelLog (ChangeId, ChangeIdLnk, OprMsgId, ChangeTime,
DBLevel, ChangeType,
TempFlag, TableName, RowId, FieldName, OldValue, NewValue, Program, UserId,
SubsysId, TrackingId,
Remarks, SessionId, SessionDate) select * from IBRD.dbo.ConfigChangelLog where
ChangeId=@id
if @@error=0 delete IBRD.dbo.ConfigChangelLog where ChangeId=@id
else delete IBRDArchive.dbo.ConfigChangeLog where ChangeId=@id
select @i=@i+1,Q@id=null,@t=min (ChangeTime)from IBRD.dbo.ConfigChangelLog
select @id=min (ChangeId)from IBRD.dbo.ConfigChangeLog where ChangeTime=@t
end
if @i>0 select ltrim(str(@i))+’ ConfigChangelog ‘+ltrim(str (datediff (ms,@go,getdate())))+’
ms’
set identity insert IBRDArchive.dbo.ConfigChangelLog off
commit tran

set deadlock priority normal
set nocount off
GO

The Stored Procedure essential loops through the available records in the original table,
identifies the next candidate to be archived, moves this record to the corresponding table in
the archive and if no error occurs, deletes it from the original.

8.15 Beacon Decode Process

The IBRD System has requires a mechanism to perform the validation and decoding of the 15
character hexadecimal identification code assigned to a 406 MHz Emergency Beacon (or
Beacon ID). An existing software package written in C++ (used at the USMCC) is employed
here to supply this capability. This package adheres to the Specification for Cospas-Sarsat
406 MHz Distress Beacons (C/S T.001). The interface between this existing package and the
IBRD application is described in this document but the details regarding the implementation
of the underlying package are not.

The external Validation/Decode component is provided to the IBRD as a dynamic link library
(DLL) with the Beacon ID being passed in an input and the desired information extracted and
returned accordingly. The IBRD System that calls this component is coded in Java and the
Java Native Interface (JNI) is used to interface with this C++ module. Specifically, the
component is within a “wrapper” DLL with the actual code compiled as a C++ library.

The following tables provide in actual input and output parameters passed to and from the
Validation/Decode component.

Input:
Name C++ Declaration | Description
Beaconld char str[15] 15 character hexadecimal identification code.

Values returned:

Name C++ Declaration | Description

Valid int Indicates if passed Beacon Id is valid (1) or
invalid (0).

InvalidMessage char str[80] Reason that Beacon Id fails validation.

BeaconRegType int Value for the BeaconRegType column in the

IBRD RegistrationDb406 table that
corresponds to the Registration Type of the
Beacon. This must contain a Registration

D2NOV05 8-27 C/S D.002 — Issue 1

November 2005
Name C++ Declaration | Description
Type.
BeaconType char str[34] Value for the BeaconType column in the

IBRD RegistrationDb406 table that
corresponds to the Type of the Beacon. This
must contain a valid Beacon type.

BeaconActivationMethod | char str[6] Value for the BeaconActivationMethod
column in the IBRD RegistrationDb406 table
that corresponds to the Category of the
Beacon. This value will be an empty string
(“>) if the Category can not be determined.

BeaconManufacturer char str[50] Value for BeaconManufacturer column in the
IBRD RegistrationDb406 table that
corresponds to the Manufacturer of the
Beacon. This value will be an empty string
(“?) if the Manufacturer cannot be
determined.!

BeaconModel char str[34] Value for the BeaconModel column in the
IBRD RegistrationDb406 table that
corresponds to the Manufacturer’s Model
Number for the Beacon. This value will be
an empty string (*”’) if the Model Number
cannot be determined. !

BeaconCountryCode int Value for the BeaconCountryCode column in
the IBRD RegistrationDb406 table that
corresponds to the Country Code of the
Beacon. This must contain a valid Country
Code.

TypeApprovalNumber int Cospas-Sarsat beacon type approval number.
This value will be a zero (“0) if the Number
cannot be determined

1. Manufacturer and Model Number are generally not available from a decode operation
within the IBRD as this is based on National coding schemes, and as such the USMCC based
module only provides these fields for USA coded beacons (which are not stored in the
IBRD).

The supporting code is found in the Class named “DecodedBeacon.java” (under the
cs\ibrd\complex folder) and is called as needed throughout the Java code of the IBRD
application. The DLL is named IBRD_BeaconDecode.dll and must be stored in the JRun4
Servers library folder (e.g., “to C:\JRund\servers\lib”).

- END OF SECTION 8 -

D2NOV05 9-1 C/S D.002 — Issue 1
November 2005

9. SOFTWARE MODIFICATIONS

The following sections detail the requirements and methodology for making software
modifications to the IBRD application. In general, the requirements for the development
environment are very similar to those of the run time one. In particular, a Java Virtual
Machine (i.e., JRun4) and SQL Server are needed, along with enough “horsepower” (disk
space and memory) to support the basics as well as the debugging environment. COTS
components required include:

e JRun4 (Service Pack 1 or higher)

e SQL Server 2000 (Service Pack 3 or higher)
e Netbeans IDE (Version 3.4 or higher)

e Java SDK (Version 1.4.0.02 or higher)

e Jakarta Ant

9.1 IDE Installation

By definition an IDE provides the means to view and modify source code as well as build
new application packages. Perhaps the most critical facility an IDE can provide is the
mechanism for setting breakpoints, stepping through and otherwise “debugging” the code.
Although a number of choices are available for this type of activity, it is likely that using the
same IDE that was used for IBRD development will result in the most effective or efficient
selection. A free version of the Netbeans package has been used, and in particular Netbeans
IDE Version 3.4 (later versions are available). Netbeans can be downloaded at
www.netbeans.org.

If Netbeans is selected as the IDE, one more element is needed to allow for full use of the
facilities under which the IBRD was developed. Specifically you need to install a package
called “Jakarta Ant”. This can be downloaded off the Internet, but as the appropriate location
of the source web site could not be readily located at the time this document was compiled.
This package provides for the use of XML based command scripts which invoke various
utilities used to deploy and debug this source code. In effect, these script mechanisms are
analogous in many ways to a “make” file used in other IDE packages like Microsoft’s Visual
Studio.

9.2 Using Netbeans

There is definitely no intention to provide a complete tutorial here on using Netbeans.
However, a few basics to “get started” are provided, leaving the actual learning curve to the
reader.

When you run Netbeans for the first time, you will need to “mount the filesystem” where you
have stored the IBRD source code. You start this process by using the associated selection
under the “File” menu (File->Mount FileSystem...). From the dialog box that appears select
“Local Directory”, click the “Next” button and then proceed to navigate to the subfolder
where you placed all the source code files (done just above in Part 1l Section 1). When you

D2NOV05 9-2 C/S D.002 — Issue 1
November 2005

have properly highlighted a folder name, the “Finish” button will become “available” to
complete the process. Once the directory is “mounted” you can open subfolders by clicking
on the circles to the left of each folder name. As you navigate down, you eventually find files
(as opposed to subfolders) which can be opened by double clicks, or by using a right click
and selecting the appropriate operation from a list of operations.

With regard to using Netbeans to look at files and modify them, no further comment is made
here, allowing for using “help” or advice directly from the vendor via the Internet. The
software is reasonably intuitive. Likewise, with regard to Java code and the full J2EE
programming environment of which the IBRD uses nearly every basic feature, from Java
code, to Java scripts to custom tag libraries, no further comments are made. The one area
that it is pertinent to expand on at least to some degree involves the processes of debugging
and recompiling since the support for these functions are perhaps somewhat unique to the
setup for this application.

In order to accomplish tasks such as debugging and recompiling you need to use the Jakarta
Ant commands. The Jakarta Ant commands themselves appear under a folder named “build”
that is not really a folder at all. There are actually several folders with names like “build”
which does confuse the issue even more, but you simply need to select the one that has the
extra symbol in the icon and reads “Anonymous Ant Project” when the cursor is used to get
the “tool tip” text. Click on the circle to “open” the “folder”. The “opened folder” lists the
possible commands, rather than files, in this case. It is important to note that you should not
use the similar looking commands from the Netbeans “Build” menu. It is perhaps useful to
mention here that the filed named “build.xml” actually contains the definitions for the
commands that are listed. As such the command actions can be edited, new ones added or
whatever.

Before discussing the individual commands, a bit of background needs to be covered. The
application software used in runtime installation by copying files into the JRun servers
subfolder (e.g., “C:\JRun4\Servers\IBRD\”), is in the “release” format, as opposed to “debug”
format. The release package actually consists of two files, “IBRD.ear” and “IBRD util.jar.
These two files are actually compressed archives of many other files (much like a WinZip
file). These files can contain many files including other Jar files, War files (another type of
archive) and individual class files, which are the “compiled” or “object” files for Java code.
The “debug” format is not compressed and exists in the same server subfolder (e.g.,
“C:\JRun4\Servers\IBRD\”) as a subfolder named “IBRD-ear”. It is very important to note
that if both are there at the same time, that JRun will attempt to load everything and serious
errors will result. In effect, JRun will try to load any possible runtime files (archives, class
files, scripts etc.) from every subfolder, no matter how deep in the tree, under the
“...Servers\IBRD\” subfolder. Folders that contain no “runtime” files, simply log minor
errors, but otherwise everything available gets loaded.

Different Jakarta Ant commands within the “build” XML file will generate “release” and
“debug” formats accordingly. The debug format will be “deployed” directly to the runtime
directory (e.g., “C:\JRund\Servers\IBRD\”). If you did not install JRun at “C\JRun4\”, the
text file named “build config.properties” will need to change accordingly for some of the
commands to work properly. Release formats get created in a subdirectory right there with
the source code named “build” and must then be manually copied to the server subfolder.

D2NOV05 9-3 C/S D.002 — Issue 1
November 2005

Now, returning to the “build” folder in Netbeans that has the extra symbol, a click on the
circle to the left to see the available commands. This does not really “open” a “folder” but
rather it opens an XML file containing the “Ant commands”. By using a right click and
selecting “execute” the various commands can be invoked. The commands used most, if not
almost exclusively, are:

ear - compiles code in “release” format and puts it into the local “build” subfolder

clean - removes the entire local “build” subfolder

cleanDeploy - removes the “debug” IBRD-ear subfolder from the server subfolder

deploy - compiles code and puts it into the “debug” format IBRD-ear subfolder

startDebug - starts the IBRD JRun Server in debug mode

stop - stops the IBRD JRun Server (regardless of start-up mode)

start - starts the IBRD JRun Server in standard (non-debug) mode

It is highly recommended that “clean” be used most of the time before building new code.
This is simply a matter of experience with problems that come from modules (or classes) not
always properly compiling in sync with each other. This is because all code
interdependencies are not generally respected when recompiling subsets of files, and the only
way to be sure that you have all the code in full sync is to do a full compile, which in this
case requires a “clean” operation as the first step. The “clean” command is required whether
you are updating a “release” format or a “debug” format package. This might seem
confusing, as “cleanDeploy” would appear to take care of “debug” packages. Simply put, it
does not. The class files (compiled Java code) are always created in the local “build”
subfolder and the “deploy” operation simply takes the next step after compiling, of placing
the results (uncompressed) into the IBRD-ear subfolder.

Finally, the commands associated with running the application from within Netbeans should
be self-explanatory but some critical points need to be made. The code can of course always
be run by invoking the proper commands from the “JRun Launcher”. The two commands
“start” and “stop” are essentially the same as those used in the “JRun Launcher” and are
really provided as a convenience. The “startDebug” command is significantly more
specialized. It starts the IBRD JRun servers in a mode where the Netbeans IDE can be
“attached to the process” allowing for the critical debugging capabilities of setting
breakpoints and stepping through source code. In order to use this special mode, Netbeans
must be told to “attach” to the process. Once the IBRD JRun server has been started using
the “startDebug” command, use the Netbeans menu to invoke Debug->Start Session->Attach.
A dialog window should appear with various text box settings. The first boxes are set by
default and the last box titled “Name” should contain the number “5000" which is the special
port to which Netbeans should “attach”. If all goes well, setting a breakpoint and stepping
through code should work.

A couple more pointers might be made with regard to “working in debug mode”.
Sometimes, ending a debug session does not work smoothly. Ideally, the Ant command
“stop” takes care of everything but for cleaner endings it is better to first make sure the code
is not paused but is “running”, then use Debug->Finish to end the “attached Session”, and
then last of all use the Ant command “stop” to halt the IBRD JRun server.

- END OF SECTION 9 -

D2NOV05 9-4 C/S D.002 — Issue 1
November 2005

page left blank

D2NOV05 10-1 C/S D.002 — Issue 1
November 2005

10. IBRD SYSTEM INSTALLATION

10.1 Installing the Database

The essential operation consists of simply “attaching” database files to the resident SQL
Server 2000. Although the SQL Server coexists on the same computer as the application
software in most of the test and/or operational environments at NOAA, this is not required.
What is required is that the SQL Server be available such that it is possible to configure a
valid JDBC connection between the application and the new SQL Server database. (JDBC
stands for Java Database Connectivity which is analogous to ODBC (Open Database
Connectivity) connections often used for other types of applications).

Step 1.1 — Copy database files
Obtain the four database files from the distribution subfolder named “Database” and
copy them to an appropriate folder for SQL Databases. File nhames:

IBRD_Data.MDF
IBRD_Log.MDF
IBRDArchive_Data.MDF
IBRDArchive _Log.MDF

This can be on the local computer, an independent disk array, a network accessible
drive etc . (A typical default location used by SQL Server might look like C:\Program
Files\Microsoft SQL Server\MSSQL\Data).

NOTE: If the files are from a CD, the “read-only” attributes need to be changed.

Step 1.2 — Attach the IBRD database
First you need to run the application “SQL Query Analyzer” and connect to the SQL
Server that will support this database. Leave the query/result window that pops up
connected to the “Master” database. Enter a command similar to the following,
replacing the path information given here with the actual location where the files were
stored in Step 1.1 above.

sp_attach db‘IBRD’,
‘C:\SQLData\IBRD Data.MDF’,
‘C:\SQLData\IBRD Log.LDEF’

sp_attach db‘IBRDArchive’,
‘C:\SQLData\IBRDArchive Data.MDF’,
‘C:\SQLData\IBRDArchive Log.LDF’

D2NOV05 10-2 C/S D.002 — Issue 1
November 2005

Step 1.3 — Create the “IBRD” SQL Login
If this is a new SQL Server (just installed) you will likely need to change the default
settings with regard to allowable methods for “authentication”. The key is that the
database must be configured for “mixed authentication”.

Next you may need to remove the existing IBRD User from the database you just
attached. In effect, the next step creates this user for the new environment and the one
already associated with the database that came from the development environment
must be removed.

Now you need to run the application “SQL Enterprise Manager” and navigate from
the “Console Root” down to the “Security” settings for the SQL Server that will
support the new IBRD database. Using a right click on “Logins”, add a “New Login”
named “IBRD”. The default database for this user should be set to IBRD. This login
should be configured to use “SQL Server Authentication” with the password being
“ibrd” (note: password is all lower case and login name is all upper case). Under the
Database Access Tab check the “Permit” box for the new IBRD and IBRDArchive
databases, and in the associated window below for each (for “Permit in Database
Role”) check the boxes for both “public”’ and “db owner”. For all the other
user/login settings, the defaults should suffice unless otherwise dictated by other
factors in the destination environment.

10.2 Installing the Application and Related COTS

Step 2.1 — Install JRun4 and Supporting Java Utilities
The JRun4 application must be installed (along with the latest service pack(s)) on the
computer designated as the App Server for this installation. Since this is a third party
package, guidance regarding installation is provided elsewhere, but it is noted here
that you must install a JRE (Java Runtime Environment) package before you can
install JRun. The JRE does not need to be purchased, but rather it can and should be
downloaded from the Sun Java web site pages (go to http://java.sun.com).
Specifically, you should download and install the Java SDK package from the Sun
web site as this contains a JRE as well as additional elements (on main page under
“Popular Downloads™ select “JRSE 1.4.2 SDK” or similar). The complete path where
the SDK has been installed will be needed further below so make note of it
accordingly. It is recommended that you install the JRun4 package itself on the “C:”
drive in a folder named simply “JRun4", full path “C:\JRun4" (i.e., to accomplish this,
override the default path involving “C:\Program Files\...” and enter your own
destination folder during the first part of the JRun4 install sequence). This is not
explicitly required, but it will simplify the basic steps for the run time installation
here, and more important it will eliminate a difficult detail or two if there is an
intention to work with the source code using the same Netbeans environment under
which this code has been developed.
2.1.1 - Install Java SDK (recommended path: C:\Java\...)
2.1.2 - Install JRun4 (highly recommended path: C:\JRun4)

NOTE: The login and password for the JRun4 Management Console are created when
JRun4 is installed. This utility will need to be run to perform the below steps related

D2NOV05 10-3 C/S D.002 — Issue 1
November 2005

to configuring the IBRD JRun Server and as such the login and password for the
JRun4 Management Console must be carefully recorded.

Step 2.2 — Install Application and Supporting Files
This step requires several simple, but very specific, file copy operations. All files
required for this step are located in distribution subfolder named “Runtime”. For
simplicity it is assumed here that JRun4 was installed with the path “C:\JRun4" and
that the Java SDK was installed in “C:\Java\”. The notation “<SDK path>" indicates
where you need to insert the actual SDK path (e.g., “j2sdk-1_4 0 _02").
2.2.1 - Copy entire IBRD folder (and subfolders) to C:\JRun4\Servers
2.2.2 - Copy IBRD_BeaconDecode.dll to C:\Java\<SDK path>\jre\bin
2.2.3 - Copy log4j-1.2.4.jar to C:\JRun4\servers\lib
2.2.4 - Copy xerces.jar to C:\JRun4\servers\lib

NOTE: If the files are from a CD, the “read-only” attributes need to be changed.

Step 2.3 — Configuration of the IBRD JRun Server
This step essentially makes it possible to “run” this Java based web site. Once the
configuration is established properly, the IBRD web site can be accessed and used on
the local machine. The web site can be made available to the actual Internet by
making proper additional settings in JRun, or by installing the Apache HTTP Server
package as discussed in Step 2.4. (The only methodology for connecting the site to
the Internet discussed further here uses Apache as the “Web” Server software layer).

In order to proceed with the configuration of the IBRD JRun Server, we need to
access the JRun Management Console (several steps are actually required to do this),
and then use this utility to make settings that will support the new IBRD JRun Server
that we are about to create. Throughout this process (as well as for using the IBRD
application) you will need to have a Java Script enabled browser. It might also be
noted that the IBRD itself will definitely work best with Internet Explorer (Version
5.0 or higher).
2.3.1 - Run the JRun Launcher
Start->Programs->Macromedia JRun 4->JRun Launcher
2.3.2 - Run the Admin JRun Server
In the dialog box that appears (one of the two windows to appear),
highlight the JRun Server named “admin”, and then click the “Start”
button. (If you just installed JRun4, the Admin Server may already be
running).
2.3.3 - Run the JRun Management Console
Now that the “admin” Server is running, you can start the JRun
Management Console with: Start->Programs-> Macromedia JRun 4-
>JRun Management Console. (If you just installed JRun4, the JRun
Management Console may already be running).
2.3.4 - Login
NOTE: The login and password was created for this interface when
JRun4 was installed.
2.3.5 - Create New Server
This is the first link on top bar of the screen. Accept the default setting
for Host Name (i.e., localhost) and type in “IBRD” for the JRun Server

D2NOV05

10-4 C/S D.002 — Issue 1
November 2005

Name. By simply clicking in the empty box below, the JRun Server
Folder should then automatically default to
“{jrun.home}/servers/IBRD” which corresponds to the folder we
created in Step 2.1.1 above. When ready, click on the “Create Server”
button. When the next window pops up, leave the port numbers etc. as
they are, and select Finish to complete the process.

2.3.6 - Start IBRD Server

You should now see your new IBRD Server on the list of available
servers (on the “Home” screen of the JRun Management Console). In
order to configure it further, we must start the new server. Click the
arrow/triangle symbol to the left of the name (or double click the IBRD
Server name and then select the last link listed) to “Start the Server”.

2.3.7 - Configure J2EE Components

If not already there, go to the IBRD Server to further configure the
related settings. The only thing you need to accomplish here is the
removal of the “default-ear” component. To do this, you must first
delete the corresponding subfolder from the C:\JRun4\Servers\IBRD
folder. (This subfolder was generated by JRun4 when we created the
server in Step 2.3.5 above). Once you have deleted the subfolder, you
can click the X button next to the “default-ear” component to delete it.
(You may get a minor “error” message, but when you select the option
to return to the J2EE components listing, the “default-ear” component
should be deleted accordingly). The IBRD and FlashRemotingEar
should be left in place on the list.

2.3.8 - Configure a Resource for the Database Connection

The critical action here is to create the JDBC connection to the SQL
Server database. Start by clicking the “Resources” link at the top. In
the displayed dialog box for “adding” a data source, type IBRD in for
the Data Source Name, leave the Database Driver defaulted to “Not-
Listed” and click the “add” button. In the dialog box that pops up next
for Data Source Settings make the following settings (read all notes
below also, before clicking “Submit”):
Data Source Name: IBRD
JNDI Name: jdbc/IBRD
Driver Class Name:
macromedia.jdbc.MacromediaDriver
URL:
jdbc:macromedia:sqglserver://<computer
_name>:1433;databaseName=IBRD; SelectM
ethod=cursor;
Description: IBRD Data Source
Pool Connections: “checked”
Pool Statements: “unchecked”
Native Results: “checked”
User Name: IBRD
Password: ibrd
Verify Password: ibrd

D2NOV05

10-5 C/S D.002 — Issue 1
November 2005

Note that the User Name is upper case and that the password entries
are lower case, just like when we added this Login/User in Step 1.3 of
the database installation above. Also note the URL entry must be
typed in exactly as shown with no spaces and that the
<computer_name> portion of the given string must be properly filled
in with the correct information (i.e., the name of the computer where
SQL Server is installed). Additionally, if there are any security
settings in the destination environment that effect the use of the default
SQL Port of 1433 for the SQL Server, you may need to change this
value accordingly. Once you have entered all the fields, click
“Submit” and your new data resource will appear in the “list” below
the “add” dialog box. Click on the “check” button to the left to
“verify” the connection to the database. If all has gone well, a message
will appear above that says “Connected to IBRD successfully”. If you
get an error message, clearly something needs to be corrected. This is
probably one of the most difficult and/or sensitive portions of the
installation and you may need to try several times to get a working
connection. Although this is not what would be expected, it has been
noted by first-hand experience that things seem to simply go better
when you completely delete the data resource and start over, rather
than just changing a couple of settings. At least, once you find settings
that work, it is recommended that you write them down or save them in
a text file, delete the resource, and do it “from scratch” one last time to
ensure a “clean” installation of the resource.

2.3.9 - Test the new IBRD Server

You are now ready, finally, to make a local connection to the IBRD
Web Site! Open a browser window (Internet Explorer recommended)
and put in http://localhost:8101/ibrd/Login.jsp for the address. Note
that the port number value of “8101” is assumed here, but should this
actually not be the first JRun server installed on this system the
assigned port might be different (e.g., 8102, 8103 etc.). It should also
be noted that parts of this address are case sensitive, and care is needed
(e.g., the “L” in Login.jsp is upper case). When the IBRD “Account
Login” screen appears, put in the User Id of “sysmgr” with a password
of “testibrd” and click the “Login” button (note: you must click the
button, not just hit the Enter key). See the document titled “IBRD
Getting Started User Manual” for a brief introduction to using the
software. A list of initial user accounts for this Pilot test database are
included there as Appendix A.

Step 2.4 — Configure DocumentManager.Properties

Back in step 2.2.1, several files were copied to the JRun servers folder (e.g.,
C:\JRun4\Servers). One of these files is named DocumentManager.Properties. As
discussed in various sections above, this file contains settings that predominately
affect the automatic generation of emails for the IBRD system. The critical changes
that will be necessary in this file as part of the installation process are:

http://localhost:8104/ibrd/Login.jsp

D2NOV05 10-6 C/S D.002 — Issue 1
November 2005

(1) If the recommendation of installing JRun4 at the root of the C: drive (i.e.,
C:\JRun4\) could not followed, all references in this file to
“c:/jrund/servers/IBRD” will need to be changed accordingly.

(2) The line with the keyword “EmailDispatcher.smtpHost” will need to be
changed to reflect the appropriate reference for the local email server.

(3) Change the line with the keyword” EmailDispatcher.fromAddress” to contain
the appropriate email address.

Note: values for email address and URL should also be set in SystemCfg.

Step 2.5 — Configure ProcessTwoYearRequest Batch Job and Scheduled Task

This requires two steps:

(1) Confirm that the field named “’‘CONFIRMATION REQUEST TIME” in SystemCfg is set
to the desired value (e.g., 60 days is a typical setting)

(2) Configure the program named “ProcessTwoYearRequest.bat” in the IBRD Server
folder (e.g., “C:\JRund\servers\IBRD”) to run as a Scheduled Task on a once a
day basis.

Step 2.6 — Configure Scheduled Tasks and OBDC for Archive Exes

This involves the followings steps:

(1) Configure the program named “IBRDFileArcPurge.exe” in the IBRD Server
folder (e.g., “C:\JRund\servers\IBRD”) to run as a Scheduled Task on a once a
day basis.

(2) Configure the program named “IBRDArcPurgeTables.exe” in the IBRD Server
folder (e.g., “C:\JRund\servers\IBRD”) to run as a Scheduled Task on a once a
day basis.

(3) Set up an Open Database Connection (ODBC) to the IBRD database for use by
these two programs. Specifically, using the Windows utility to manage ODBC
connections (under Administrative Tools in the Control Panel), create an entry
with the name “IBRD” and a connection to appropriate SQL Server with the
default database set to IBRD and employing SQL Authentification.

Step 2.7 — Configure IBRD JRun Server as a Windows Service

This is a critical step once everything is working correctly to ensure that when there is
a hardware or operating system restart that the web site’s JRun level support is
restarted automatically as well. The following three steps create service named “JRun
IBRD Server”:

(1) Open an MSDOS Command Window

(2) Go the JRun4 “bin” folder (e.g., C:\JRun4\bin)

(3) Run the jrunsvc.exe application with the syntax: jrunsvc -install
IBRD

D2NOV05 10-7 C/S D.002 — Issue 1
November 2005

Step 2.8 — Clear Tables and Text Logs

Assuming that testing is complete and the IBRD System is ready to go operational,
the following tables in both the IBRD and the IBRDArchive databases should be
cleared of all records:

Table Name Comments

BeaconReportFact Be aware of dependencies on various
dimension tables (names end in “dim”)

OperMsglLog

LogUserAccess

LogQueryAccess

LogPrtEmailFax

SarTransactionLog

ConfigChangeLog

Feedback

RegistrationDb406 Specific arrangements to keep certain
records for National Administrations could
be arranged if appropriate.

Note: In all but RegistrationDb406 it is recommended that the Identity column be re-
seeded to the value “1”.

In addition all files in the following folders should be deleted:

Folder Comments
C:\JRun4\logs (actual path or drive letter may vary)
C:\JRun4\servers\IBRD\dispatch\temp | (actual path or drive letter may vary)

Step 2.9 — Set Up Initial Accounts

In effect the IBRD must be configured accordingly for the ultimate Runtime
environment. This is a matter of setting up User accounts using the built in user
interface capabilities of the application itself and/or direct population of the fields in
the Users table. (See Section 5.1 of the IBRD System Maintenance Manual).

Step 2.10 — HTTP Server

Once the database, the application and the JRun configuration are all in place, some
method of negotiating outside requests to and from the Internet is required. JRun
provides such a “Web Server” capability. To date the Apache HTTP Server has been
used in IBRD development and testing. Beyond observing that this capability is
needed, this document goes no further in specifications as this will depend largely
upon the environment in which the application is deployed.

- END OF SECTION 10 -

D2NOV05 10-8 C/S D.002 — Issue 1
November 2005

page left blank

D2NOV05 A-1 C/S D.002 — Issue 1

November 2005
ANNEX A
LIST OF ABBREVIATIONS AND ACRONYMS
COSPAS Space system for the rescue of vessels in distress (Russian Federation)
COTS Commercial off the shelf
CIS Cospas-Sarsat
ELT Emergency Locator Transmitter
EPIRB Emergency Position Indicating Radio Beacon
FAX Facsimile
FAQ Frequently asked question
IBRD International 406 MHz Beacon Registration Database
ICAO International Civil Aviation Organization
ID Identification
IMO International Maritime Organization
IP Internet protocol
ITU International Telecommunication Union
MARS Maritime mobile access and retrieval system (ITU database)
MCC Cospas-Sarsat Mission Control Centre
MHz Megahertz
MMSI Maritime Mobile Station Identity
POC Point of contact
PLB Personal Locator Beacon
RCC Rescue Coordination Centre
SAR Search and Rescue
SARSAT Search and Rescue Satellite Aided Tracking system (Canada, France, USA)
SBM Shore-based maintenance
SQL Structured query language
TAC Type approval certificate
15 Hex ID 15 hexadecimal character identification
- END OF ANNEX A —

- END OF DOCUMENT -

D2NOV05 A-2 C/S D.002 — Issue 1
November 2005

page left blank

Cospas-Sarsat Secretariat
1250 René-Lévesque Blvd. West, Suite 4215, Montréal (Québec) H3B 4W8 Canada
Telephone: +1 514 500 7999 Fax: +1 514 500 7996
Email: mail@cospas-sarsat.int
Website: http://www.cospas-sarsat.int

mailto:mail@cospas-sarsat.int
http://www.cospas-sarsat.int/

